45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Fe3O4@AMNA-CuBr Nanocomposite as a Highly Efficient and Reusable Heterogenous Catalyst for Synthesis of Highly Substituted Oxazoles

, , , , , , , & show all
Received 19 Jul 2023, Accepted 23 Oct 2023, Published online: 07 Nov 2023

References

  • M.B. Chaudhari and B. Gnanaprakasam, “Recent Advances in the Metal-Catalyzed Activation of Amide Bonds,” Chemistry, an Asian Journal 14, no. 1 (2019): 76–93. doi:10.1002/asia.201801317
  • M.S. Mirhosseyni, F. Nemati, and H.T. Nahzomi, “Incorporation of Copper Nanoparticles into the Nitrogen‐Doped Carbon Derived from Nitrile Functionalized Ionic Liquid as the Non‐Precious Heterogeneous Catalytic System toward Nitro Compounds Reduction Reaction, a First Principle Calculation,” Journal of Chemical Technology & Biotechnology 96, no. 10 (2021): 2802–12. doi:10.1002/jctb.6827
  • L. Kong, Y. Liu, L. Dong, L. Zhang, L. Qiao, W. Wang, and H. You, “Enhanced Red Luminescence in CaAl 12 O 19 :Mn 4+ via Doping Ga 3+ for Plant Growth Lighting,” Dalton Transactions 49, no. 6 (2020): 1947–54. doi:10.1039/C9DT04086B
  • L.D. Luca, “Naturally Occurring and Synthetic Imidazoles: Their Chemistry and Their Biological Activities,” Current Medicinal Chemistry 13, no. 1 (2006): 1–23. doi:10.2174/092986706775197971
  • Y. Dou, A. Wang, L. Zhao, X. Yang, Q. Wang, M. Shire Sudi, W. Zhu, and D. Shang, “Boosted Hydrogen Evolution Reaction for a Nitrogen-Rich Azo-Bridged Metallated Porphyrin Network,” Journal of Colloid and Interface Science 650, no. Pt A (2023): 943–50. doi:10.1016/j.jcis.2023.07.051
  • D.J. Ritson, C. Spiteri, and J.E. Moses, “A Silver-Mediated One-Step Synthesis of Oxazoles,” The Journal of Organic Chemistry 76, no. 9 (2011): 3519–22. doi:10.1021/jo1025332
  • M.S. Mirhosseyni and F. Nemati, “Metal-Free Aerobic Oxidation of Benzyl Alcohols over the Selective N, P Dual-Doped Hollow Carbon Sphere as the Efficient and Sustainable Heterogeneous Catalyst under Mild Reaction Condition,” Microporous and Mesoporous Materials 329 (2022): 111514. doi:10.1016/j.micromeso.2021.111514
  • Z. Dai, Z. Ma, X. Zhang, J. Chen, R. Ershadnia, X. Luan, and M. R. Soltanian, “An Integrated Experimental Design Framework for Optimizing Solute Transport Monitoring Locations in Heterogeneous Sedimentary Media,” Journal of Hydrology 614 (2022): 128541. doi:10.1016/j.jhydrol.2022.128541
  • X. Lin, K. Lu, A. K. Hardison, Z. Liu, X. Xu, D. Gao, J. Gong, and W. S. Gardner, “Membrane Inlet Mass Spectrometry Method (REOX/MIMS) to Measure 15N-Nitrate in Isotope-Enrichment Experiments,” Ecological Indicators 126 (2021): 107639. doi:10.1016/j.ecolind.2021.107639
  • A. Ibrar, I. Khan, N. Abbas, U. Farooq, and A. Khan, “Transition-Metal-Free Synthesis of Oxazoles: Valuable Structural Fragments in Drug Discovery,” RSC Advances 6, no. 95 (2016): 93016–47. doi:10.1039/C6RA19324B
  • Q. Wan, C.-Y. Huang, Z.-W. Hou, H. Jiang, and L. Wang, “Organophotoelectrochemical Silylation Cyclization for the Synthesis of Silylated 3-CF 3 -2-Oxindoles,” Organic Chemistry Frontiers 10, no. 14 (2023): 3585–90. doi:10.1039/D3QO00728F
  • Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, and Y. Zhao, “Sulfur-Doped g-C3N4/rGO Porous Nanosheets for Highly Efficient Photocatalytic Degradation of Refractory Contaminants,” Journal of Materials Science and Technology. 41 (2020): 117–26. doi:10.1016/j.jmst.2019.09.018
  • C. Spiteri, D.J. Ritson, A. Awaad, and J.E. Moses, “Silver Mediated One-Step Synthesis of Oxazoles from α-Haloketones,” Journal of Saudi Chemical Society 15, no. 4 (2011): 375–8. doi:10.1016/j.jscs.2011.06.021
  • M. Li, Q. Guo, L. Chen, L. Li, H. Hou, and Y. Zhao, “Microstructure and Properties of Graphene Nanoplatelets Reinforced AZ91D Matrix Composites Prepared by Electromagnetic Stirring Casting,” Journal of Materials Research and Technology. 21 (2022): 4138–50. doi:10.1016/j.jmrt.2022.11.033
  • Q. Yu, “Theoretical Studies of Non-Noble Metal Single-Atom Catalyst Ni1/MoS2: Electronic Structure and Electrocatalytic CO2 Reduction,” Science China Materials 66, no. 3 (2023): 1079–88. doi:10.1007/s40843-022-2222-6
  • Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng, “Benzothiazole Derivatives-Based Supramolecular Assemblies as Efficient Corrosion Inhibitors for Copper in Artificial Seawater: Formation, Interfacial Release and Protective Mechanisms,” Corrosion Science. 212 (2023): 110957. doi:10.1016/j.corsci.2022.110957
  • P. Kumar, V. Tomar, D. Kumar, R.K. Joshi, and M. Nemiwal, “Magnetically Active Iron Oxide Nanoparticles for Catalysis of Organic Transformations: A Review,” Tetrahedron 106–107 (2022): 132641. doi:10.1016/j.tet.2022.132641
  • M. Kidwai, A. Jain, and S. Bhardwaj, “Magnetic Nanoparticles Catalyzed Synthesis of Diverse N-Heterocycles, Mol,” Molecular Diversity 16, no. 1 (2012): 121–8. doi:10.1007/s11030-011-9336-z
  • M. Aqeel Ashraf, Z. Liu, Y. Yang, and D. Zhang, “Magnetic Nanoparticles Supported Copper Catalysts: Synthesis of Heterocyclic Scaffolds, Synth,” Synthetic Communications 50, no. 19 (2020): 2885–905. doi:10.1080/00397911.2020.1789167
  • M. Ghobadi, M. Kargar Razi, R. Javahershenas, and M. Kazemi, “Nanomagnetic Reusable Catalysts in Organic Synthesis,” Synthetic Communications. 51, no. 5 (2021): 647–69. doi:10.1080/00397911.2020.1819328
  • M. Kazemi and M. Ghobadi, “Magnetically Recoverable Nano-Catalysts in Sulfoxidation Reactions,” Nanotechnology Reviews 6, no. 6 (2017): 549–71. doi:10.1515/ntrev-2016-0113
  • A. Samandi, F. Nemati, M.S. Mirhosseyni, and S. Sabaqian, “Magnetic Selenium and Nitrogen Dual‐Doped Mesoporous Carbon for Immobilization of Pd Nanoparticles: The Utilitarian Heterogeneous Catalyst in Heck‐Cross Coupling Reaction,” Applied Organometallic Chemistry 37, no. 3 (2023): e6988. doi:10.1002/aoc.6988
  • L. Shiri, A. Ghorbani-Choghamarani, and M. Kazemi, “Sulfides Synthesis: Nanocatalysts in C–S Cross-Coupling Reactions,” Australian Journal of Chemistry 69, no. 6 (2016): 585. doi:10.1071/CH15528
  • N. Ahadi, A. Mobinikhaledi, A. Fathehesami, and Z. Bagheri, “Zn Salen Complex Supported on MnCoFe2O4(MCF) Magnetic Nanoparticles as a Catalyst in the Synthesis of 3,4-Dihydropyrimidin-2 (1H)-Ones/Thiones (Biginelli-like Reaction),” Research on Chemical Intermediates 48, no. 6 (2022): 2469–88. doi:10.1007/s11164-022-04709-6
  • N. Moeini, S. Molaei, and M. Ghadermazi, “Selective Oxidation of Sulfides and Synthesis of 5-Substituted 1H-Tetrazoles on Ce (III) Immobilized CoFe2O4 as a Magnetically Separable, Highly Active, and Reusable Nanocatalyst,” Research on Chemical Intermediates 48, no. 7 (2022): 3109–28. doi:10.1007/s11164-022-04742-5
  • Z. Wang, C. Chen, H. Liu, D. Hrynshpan, T. Savitskaya, J. Chen, and J. Chen, “Enhanced Denitrification Performance of Alcaligenes sp. TB by Pd Stimulating to Produce Membrane Adaptation Mechanism Coupled with Nanoscale Zero-Valent Iron,” The Science of the Total Environment 708 (2020): 135063. doi:10.1016/j.scitotenv.2019.135063
  • A. Rostami, B. Atashkar, and D. Moradi, “Synthesis, Characterization and Catalytic Properties of Magnetic Nanoparticle Supported Guanidine in Base Catalyzed Synthesis of α-Hydroxyphosphonates and α-Acetoxyphosphonates,” Applied Catalysis A: General 467 (2013): 7–16. doi:10.1016/j.apcata.2013.07.001
  • T.M. Dhameliya, H.A. Donga, P.V. Vaghela, B.G. Panchal, D.K. Sureja, K.B. Bodiwala, and M.T. Chhabria, “A Decennary Update on Applications of Metal Nanoparticles (MNPs) in the Synthesis of Nitrogen- and Oxygen-Containing Heterocyclic Scaffolds,” RSC Advances 10, no. 54 (2020): 32740–820. doi:10.1039/D0RA02272A
  • W. Du, R. Huang, X. Huang, R. Chen, and F. Chen, “Copper-Promoted Heterogeneous Fenton-like Oxidation of Rhodamine B over Fe3O4 Magnetic Nanocatalysts at Mild Conditions,” Environmental Science and Pollution Research International 28, no. 16 (2021): 19959–68. doi:10.1007/s11356-020-12264-z
  • V.K. Booramurthy, R. Kasimani, S. Pandian, and D. Subramanian, “Magnetic Nano-Catalyzed Synthesis of Biodiesel from Tannery Sludge: Characterization, Optimization and Kinetic Studies,” Arabian Journal for Science and Engineering 47, no. 5 (2022): 6341–53. doi:10.1007/s13369-021-06020-9
  • D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, and Y. Fan, “A General Linear Free Energy Relationship for Predicting Partition Coefficients of Neutral Organic Compounds,” Chemosphere 247 (2020): 125869. doi:10.1016/j.chemosphere.2020.125869
  • T. Tang, M. Zhou, J. Lv, H. Cheng, H. Wang, D. Qin, G. Hu, and X. Liu, “Sensitive and Selective Electrochemical Determination of Uric Acid in Urine Based on Ultrasmall Iron Oxide Nanoparticles Decorated Urchin-like Nitrogen-Doped Carbon,” Colloids and Surfaces. B, Biointerfaces 216 (2022): 112538. doi:10.1016/j.colsurfb.2022.112538
  • R. Dalpozzo, “Magnetic Nanoparticle Supports for Asymmetric Catalysts,” Green Chemistry 17, no. 7 (2015): 3671–86. doi:10.1039/C5GC00386E
  • S. Shylesh, V. Schünemann, and W.R. Thiel, “Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie (International ed. in English) 49, no. 20 (2010): 3428–59. doi:10.1002/anie.200905684
  • H.R. Sonawane, J.V. Deore, and P.N. Chavan, “Reusable Nano Catalysed Synthesis of Heterocycles: An Overview,” ChemistrySelect 7, no. 8 (2022): e202103900. doi:10.1002/slct.202103900
  • L. Zhang, D. Qin, J. Feng, T. Tang, and H. Cheng, “Rapid Quantitative Detection of Luteolin Using an Electrochemical Sensor Based on Electrospinning of Carbon Nanofibers Doped with Single-Walled Carbon Nanoangles,” Analytical Methods: Advancing Methods and Applications 15, no. 25 (2023): 3073–83. doi:10.1039/D3AY00497J
  • M.F. Kamel Ariffin and A. Idris, “Fe2O3/Chitosan Coated Superparamagnetic Nanoparticles Supporting Lipase Enzyme from Candida Antarctica for Microwave Assisted Biodiesel Production,” Renewable Energy 185 (2022): 1362–75. doi:10.1016/j.renene.2021.11.077
  • R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, and M.B. Gawande, “Fe 3 O 4 (Iron Oxide)-Supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions,” Green Chemistry 18, no. 11 (2016): 3184–209. doi:10.1039/C6GC00864J
  • Y. Huang and W. Zhang, “Magnetic Nanoparticle-Supported Organocatalysis,” GPS 2, no. 6 (2013): 603–9. doi:10.1515/gps-2013-0076
  • H. Li, S. Si, K. Yang, Z. Mao, Y. Sun, X. Cao, H. Yu, J. Zhang, C. Ding, H. Liang, et al. “Hexafluoroisopropanol Based Silk Fibroin Coatings on AZ31 Biometals with Enhanced Adhesion, Corrosion Resistance and Biocompatibility,” Progress in Organic Coatings 184 (2023): 107881. doi:10.1016/j.porgcoat.2023.107881
  • P. Chandra, “Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals,” ChemistrySelect 6, no. 38 (2021): 10274–322. doi:10.1002/slct.202103035
  • A. Souldozi, A. Ramazani, A.R. Dadrass, K. Ślepokura, and T. Lis, “Efficient One-Pot Synthesis of Alkyl 2-(Dialkylamino)-4-Phenylthiazole-5-Carboxylates and Single-Crystal X-Ray Structure of Methyl 2-(Diisopropylamino)-4-Phenylthiazole-5-Carboxylate,” Helvetica Chimica Acta 95, no. 2 (2012): 339–48. doi:10.1002/hlca.201100322
  • J. Xia, Y. Li, C. He, C. Yong, L. Wang, H. Fu, X.-L. He, Z.-Y. Wang, D.-F. Liu, and Y.-Y. Zhang, “Synthesis and Biological Activities of Oxazolidinone Pleuromutilin Derivatives as a Potent anti-MRSA Agent,” ACS Infectious Diseases 9, no. 9 (2023): 1711–29. doi:10.1021/acsinfecdis.3c00162
  • J. Lu, Y. Chen, M. Ding, X. Fan, J. Hu, Y. Chen, J. Li, Z. Li, and W. Liu, “A 4arm-PEG Macromolecule Crosslinked Chitosan Hydrogels as Antibacterial Wound Dressing,” Carbohydrate Polymers 277 (2022): 118871. doi:10.1016/j.carbpol.2021.118871
  • A. Ramazani, A.T. Mahyari, M. Rouhani, and A. Rezaei, “A Novel Three-Component Reaction of a Secondary Amine and a 2-Hydroxybenzaldehyde Derivative with an Isocyanide in the Presence of Silica Gel: An Efficient One-Pot Synthesis of Benzo[b]Furan Derivatives,” Tetrahedron Letters 50, no. 40 (2009): 5625–7. doi:10.1016/j.tetlet.2009.07.115
  • M. Rouhani, A. Ramazani, and S.W. Joo, “Novel, Fast and Efficient One-Pot Sonochemical Synthesis of 2-Aryl-1,3,4-Oxadiazoles, Ultrason,” Ultrasonics Sonochemistry 21, no. 1 (2014): 262–7. doi:10.1016/j.ultsonch.2013.06.009
  • M. Kazemi and N. Karezani, “Research on Biological and Bioactive Molecules Containing Pyrrole Scaffolds, Biol,” Molecular Chemistry 1 (2023): 15–26. doi:10.22034/bmc.2023.414945.1003
  • S. Taghavi Fardood, A. Ramazani, Z. Golfar, and S.W. Joo, “Green Synthesis of Ni‐Cu‐Zn Ferrite Nanoparticles Using Tragacanth Gum and Their Use as an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives,” Applied Organometallic Chemistry 31, no. 12 (2017): e3823. doi:10.1002/aoc.3823
  • A. Ramazani and A. Reza Kazemizadeh, “Preparation of Stabilized Phosphorus Ylides via Multicomponent Reactions and Their Synthetic Applications,” Current Organic Chemistry 15, no. 23 (2011): 3986–4020. doi:10.2174/138527211798072412
  • F. Kalantari, S. Rezayati, A. Ramazani, and M.P. Heravi, “Syntheses and Structures of Magnetic Nanodendrimers and Their Catalytic Application in Organic Synthesis,” Applied Organometallic Chemistry 37, no. 6 (2023): e7064. doi:10.1002/aoc.7064
  • A.M. Mustafa and A. Younes, “Fe3O4-Bis[Imine-Pyridine]-Cu(OAc)2 Catalyzed Synthesis of Benzoxazoles and Benzothiazoles through Hydroamination of Alkynones with 2-Aminophenols and 2-Aminothiophenols, Nanomater,” Chemistry 1 (2023): 12–23. doi:10.22034/nc.2023.414843.1001
  • A. Souldozi, A. Ramazani, N. Bouslimani, and R. Welter, “The Reaction of (N-Isocyanimino)Triphenylphosphorane with Dialkyl Acetylenedicarboxylates in the Presence of 1,3-Diphenyl-1,3-Propanedione: A Novel Three-Component Reaction for the Stereoselective Synthesis of Dialkyl (Z)-2-(5,7-Diphenyl-1,3,4-Oxadiazepin,” Tetrahedron Letters 48, no. 14 (2007): 2617–20. doi:10.1016/j.tetlet.2007.02.010
  • S. Rezayati, A. Ramazani, S. Sajjadifar, H. Aghahosseini, and A. Rezaei, “Design of a Schiff Base Complex of Copper Coated on Epoxy-Modified Core-Shell MNPs as an Environmentally Friendly and Novel Catalyst for the One-Pot Synthesis of Various Chromene-Annulated Heterocycles,” ACS Omega 6, no. 39 (2021): 25608–22. doi:10.1021/acsomega.1c03672
  • Z. Hosseinzadeh, A. Ramazani, and N. Razzaghi-Asl, “Anti-Cancer Nitrogen-Containing Heterocyclic Compounds,” Current Organic Chemistry 22, no. 23 (2018): 2256–79. doi:10.2174/1385272822666181008142138
  • I. Yavari, and A. Ramazani, “Triphenylphosphine Catalyzed Stereoselective Synthesis of O -Vinyloximes, Synth,” Synthetic Communications 27, no. 8 (1997): 1449–54. doi:10.1080/00397919708006076
  • E. Duchamp and S. Hanessian, “Cyanide-Free Synthesis of Air Stable N-Substituted Li and K Cyanamide Salts from Tetrazoles. Applications toward the Synthesis of Primary and Secondary Cyanamides as Precursors to Amidines,” Organic Letters 22, no. 21 (2020): 8487–91. doi:10.1021/acs.orglett.0c03085
  • M. Khoobi, A. Foroumadi, S. Emami, M. Safavi, G. Dehghan, B.H. Alizadeh, A. Ramazani, S.K. Ardestani, and A. Shafiee, “Coumarin-Based Bioactive Compounds: Facile Synthesis and Biological Evaluation of Coumarin-Fused 1,4-Thiazepines,” Chemical Biology & Drug Design 78, no. 4 (2011): 580–6. doi:10.1111/j.1747-0285.2011.01175.x
  • S. Rezayati, F. Kalantari, A. Ramazani, S. Sajjadifar, H. Aghahosseini, and A. Rezaei, “Magnetic Silica-Coated Picolylamine Copper Complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)]-Catalyzed Biginelli Annulation Reaction,” Inorganic Chemistry 61, no. 2 (2022): 992–1010. doi:10.1021/acs.inorgchem.1c03042
  • M. Kaspady, V. Narayanaswamy, M. Raju, and G. Rao, “Synthesis, Antibacterial Activity of 2,4-Disubstituted Oxazoles and Thiazoles as Bioisosteres,” Letters in Drug Design & Discovery 6, no. 1 (2009): 21–8. doi:10.2174/157018009787158481
  • T.A. Rossa, N.S. Suveges, M.M. Sá, D. Cantillo, and C.O. Kappe, “Continuous Multistep Synthesis of 2-(Azidomethyl)Oxazoles,” Beilstein Journal of Organic Chemistry 14 (2018): 506–14. doi:10.3762/bjoc.14.36
  • S. Kakkar and B. Narasimhan, “A Comprehensive Review on Biological Activities of Oxazole Derivatives,” BMC Chemistry 13, no. 1 (2019): 16. doi:10.1186/s13065-019-0531-9
  • V.D. Kadu, “Recent Advances for Synthesis of Oxazole Heterocycles via C‐H/C‐N Bond Functionalization of Benzylamines,” ChemistrySelect 7, no. 22 (2022): e202104028. doi:10.1002/slct.202104028
  • T.H. Graham, “A Direct Synthesis of Oxazoles from Aldehydes,” Organic Letters 12, no. 16 (2010): 3614–7. doi:10.1021/ol101346w
  • W.-C. Gao, R.-L. Wang, and C. Zhang, “Practical Oxazole Synthesis Mediated by Iodine from α-Bromoketones and Benzylamine Derivatives,” Organic & Biomolecular Chemistry 11, no. 41 (2013): 7123–8. doi:10.1039/c3ob41566j
  • L. Wei and G. Yuan, “Synthesis of 2,4,5-Trisubstituted Oxazoles from 1,2-Diketones and Amines by Using an Electrochemical Method,” Tetrahedron 132 (2023): 133246. doi:10.1016/j.tet.2023.133246
  • M. Zheng, L. Huang, H. Huang, X. Li, W. Wu, and H. Jiang, “Palladium-Catalyzed Sequential C–N/C–O Bond Formations: Synthesis of Oxazole Derivatives from Amides and Ketones,” Organic Letters 16, no. 22 (2014): 5906–9. doi:10.1021/ol502916a
  • T. Chatterjee, J.Y. Cho, and E.J. Cho, “Synthesis of Substituted Oxazoles by Visible-Light Photocatalysis,” The Journal of Organic Chemistry 81, no. 16 (2016): 6995–7000. doi:10.1021/acs.joc.6b00989
  • X. Li, L. Huang, H. Chen, W. Wu, H. Huang, and H. Jiang, “Copper-Catalyzed Oxidative [2 + 2 + 1] Cycloaddition: Regioselective Synthesis of 1,3-Oxazoles from Internal Alkynes and Nitriles,” Chemical Science 3, no. 12 (2012): 3463. doi:10.1039/c2sc21041j
  • A. Saito, N. Hyodo, and Y. Hanzawa, “Synthesis of Highly Substituted Oxazoles through Iodine(III)-Mediated Reactions of Ketones with Nitriles,” Molecules 17, no. 9 (2012): 11046–55. doi:10.3390/molecules170911046
  • D. Wu, Y. Lu, W. Hao, S. Tu, and B. Jiang, “Synthesis of Fully Substituted Oxazoles via an NFSI/KF‐Mediated Double Bond Cleavage‐Rearrangement Cascade,” Asian Journal of Organic Chemistry 10, no. 3 (2021): 602–5. doi:10.1002/ajoc.202000627

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.