130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Alternative Green Method for Synthesis of 3-Amino-5-Methylisoxazole Schiff Bases and Their Bioactivity Evaluation

&
Received 21 Jun 2023, Accepted 02 Jan 2024, Published online: 10 Jan 2024

References

  • J.G. Lombardino and J. A. Lowe, “The Role of the Medicinal Chemist in Drug Discovery—Then and Now,” Nature Reviews 3, no. 10 (2004): 853–62. doi:10.1038/nrd1523
  • B.E. Maryanoff, “Drug Discovery and the Medicinal Chemist,” Future Medicinal Chemistry 1, no. 1 (2009): 11–5. doi:10.4155/fmc.09.2
  • M. Manjunath, A.D. Kulkarni, G.B. Bagihalli, S. Malladi, and S.A. Patil, “Bio-Important Antipyrine Derived Schiff Bases and Their Transition Metal Complexes: Synthesis, Spectroscopic Characterization, Antimicrobial, Anthelmintic and DNA Cleavage Investigation,” Journal of Molecular Structure 1127 (2017): 314–21. doi:10.1016/j.molstruc.2016.07.123
  • D. Hamid, I. Sodani, N. Safir, Y. Salih, H.K. Ibrahim, I. Al-Sammarraie, M.M. Khudair. “History, Classification and Biological Activity of Heterocyclic Compounds,” 4 (2023): 72–80.
  • T. Qadir, A. Amin, P.K. Sharma, I. Jeelani, and H. Abe, “A Review on Medicinally Important Heterocyclic Compounds,” The Open Medicinal Chemistry Journal 16, no. 1 (2022): E 187410452202280. doi:10.2174/18741045-v16-e2202280
  • D.J. Rao, K. Nagaraju, and S. Maddila, “Microwave Irradiated Mild, Rapid, One-Pot and Multi-Component Synthesis of Isoxazole-5(4H)-Ones,” Chemical Data Collections 32 (2021): 100669. doi:10.1016/j.cdc.2021.100669
  • T. Morita, S. Yugandar, S. Fuse, and H. Nakamura, “Recent Progresses in the Synthesis of Functionalized Isoxazoles,” Tetrahedron Letters 59, no. 13 (2018): 1159–1171. doi:10.1016/j.tetlet.2018.02.020
  • T.M.V.D. Pinho e Melo, “Recent Advances on the Synthesis and Reactivity of Isoxazoles,” Current Organic Chemistry 9, no. 10 (2005): 925–58. doi:10.2174/1385272054368420
  • R.Y. Jin, X.H. Sun, Y.F. Liu, W. Long, B. Chen, S.Q. Shen, and H.X. Ma, “Synthesis, Crystal Structure, Biological Activity and Theoretical Calculations of Novel Isoxazole Derivatives,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 152 (2016): 226–232. doi:10.1016/j.saa.2015.07.057
  • S. Mishra, S. Patel, and C.G. Halpani, “Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application,” Chemistry & Biodiversity 16, no. 2 (2019): E 1800366. doi:10.1002/cbdv.201800366
  • A.A. Abu-Hashem and M. El-Shazly, “Synthesis of New Isoxazole-, Pyridazine-, Pyrimidopyrazines and Their Anti-Inflammatory and Analgesic Activity,” Medicinal Chemistry (Shariqah (United Arab Emirates)) 14, no. 4 (2018): 356–71. doi:10.2174/1573406414666180112110947
  • R.A. Gupta and S.G. Kaskhedikar, “Synthesis, Antitubercular Activity, and QSAR Analysis of Substituted Nitroaryl Analogs: Chalcone, Pyrazole, Isoxazole, and Pyrimidines,” Medicinal Chemistry Research 22, no. 8 (2013): 3863–80. doi:10.1007/s00044-012-0385-3
  • M. Schmidtke, P. Wutzler, R. Zieger, O.B. Riabova, and V.A. Makarov, “New Pleconaril and [(Biphenyloxy)Propyl]Isoxazole Derivatives with Substitutions in the Central Ring Exhibit Antiviral Activity against Pleconaril-Resistant Coxsackievirus B3,” Antiviral Research 81, no. 1 (2009): 56–63. doi:10.1016/j.antiviral.2008.09.002
  • P. Ratcliffe, L. Abernethy, N. Ansari, K. Cameron, T. Clarkson, M. Dempster, D. Dunn, A.-M. Easson, D. Edwards, K. Everett, et al. “Discovery of Potent, Soluble and Orally Active TRPV1 Antagonists. Structure–Activity Relationships of a Series of Isoxazoles,” Bioorganic & Medicinal Chemistry Letters 21, no. 15 (2011): 4652–4657. doi:10.1016/j.bmcl.2011.01.051
  • N. Agrawal and P. Mishra, “Synthesis, Monoamine Oxidase Inhibitory Activity and Computational Study of Novel Isoxazole Derivatives as Potential Antiparkinson Agents,” Computational Biology and Chemistry 79 (2019): 63–72. doi:10.1016/j.compbiolchem.2019.01.012
  • S. Shahinshavali, R. Sreenivasulu, V.R. Guttikonda, D. Kolli, and M.V.B. Rao, “Synthesis and Anticancer Activity of Amide Derivatives of 1,2-Isoxazole Combined 1,2,4-Thiadiazole,” Russian Journal of General Chemistry 89, no. 2 (2019): 324–329. doi:10.1134/S1070363219020257
  • N. Agrawal, and P. Mishra, “The Synthetic and Therapeutic Expedition of Isoxazole and Its Analogs,” Medicinal Chemistry Research 27, no. 5 (2018): 1309–44. doi:10.1007/s00044-018-2152-6
  • H. Schiff, “Mittheilungen Aus Dem Universitätslaboratorium in Pisa: Eine Neue Reihe Organischer Basen,” Justus Liebigs Annalen Der Chemie 131, no. 1 (1864): 118–9. doi:10.1002/jlac.18641310113
  • C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins, and Â. de Fátima, “Schiff Bases: A Short Review of Their Antimicrobial Activities,” Journal of Advanced Research 2, no. 1 (2011): 1–8. doi:10.1016/j.jare.2010.05.004
  • M.A. Arafath, F. Adam, F.S.R. Al-Suede, M.R. Razali, M.B.K. Ahamed, A.M.S. Abdul Majid, M.Z. Hassan, H. Osman, and S. Abubakar, “Synthesis, Characterization, X-Ray Crystal Structures of Heterocyclic Schiff Base Compounds and in Vitro Cholinesterase Inhibition and Anticancer Activity,” Journal of Molecular Structure 1149 (2017): 216–28. doi:10.1016/j.molstruc.2017.07.092
  • N. Uddin, F. Rashid, S. Ali, S.A. Tirmizi, I. Ahmad, S. Zaib, M. Zubair, P.L. Diaconescu, M.N. Tahir, J. Iqbal, et al. “Synthesis, Characterization, and Anticancer Activity of Schiff Bases,” Journal of Biomolecular Structure & Dynamics 38, no. 11 (2020): 3246–59. doi:10.1080/07391102.2019.1654924
  • A.A. Madi, D. Haffar, F. Benghanem, S. Ghedjati, L. Toukal, V. Dorcet, and R. Bourzami, “Synthesis, Crystal Structure, Electrochemical, Theoretical Studies and Antioxidant Activities of New Schiff Base,” Journal of Molecular Structure 1227 (2021): 129368. doi:10.1016/j.molstruc.2020.129368
  • M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald, and K. Robards, “Methods for Testing Antioxidant Activity,” The Analyst 127, no. 1 (2002): 183–98. doi:10.1039/B009171P
  • N.A. Khalaf, A.K. Shakya, A. Al-Othman, Z. El-Agbar, and H. Farah, “Antioxidant Activity of Some Common Plants,” Turkish Journal of Biology 32, no. 1 (2008): 51–5.
  • C. Remes, A. Paun, I. Zarafu, M. Tudose, M.T. Caproiu, G. Ionita, C. Bleotu, L. Matei, and P. Ionita, “Chemical and Biological Evaluation of Some New Antipyrine Derivatives with Particular Properties,” Bioorganic Chemistry 41-42 (2012): 6–12. doi:10.1016/j.bioorg.2011.12.003
  • M.V. Murlykina, M.N. Kornet, S.M. Desenko, S.V. Shishkina, O.V. Shishkin, A.A. Brazhko, V.I. Musatov, E.V. Van der Eycken, and V.A. Chebanov, “New Tricks of Well-Known Aminoazoles in Isocyanide-Based Multicomponent Reactions and Antibacterial Activity of the Compounds Synthesized,” Beilstein Journal of Organic Chemistry 13 (2017): 1050–63. doi:10.3762/bjoc.13.104
  • S.S. Panda, P.V. Chowdary, and B.S. Jayashree, “Synthesis, Antiinflammatory and Antibacterial Activity of Novel Indolyl-Isoxazoles,” Indian Journal of Pharmaceutical Sciences 71, no. 6 (2009): 684–7. doi:10.4103/0250-474x.59554
  • J. Zhu, J. Mo, H.-Z. Lin, Y. Chen, and H.-P. Sun, “The Recent Progress of Isoxazole in Medicinal Chemistry,” Bioorganic & Medicinal Chemistry 26, no. 12 (2018): 3065–75. doi:10.1016/j.bmc.2018.05.013
  • A. Shahrisa, R. Teimuri-Mofrad, and M. Gholamhosseini-Nazari, “Synthesis of a New Class of Betti Bases by the Mannich-Type Reaction: efficient, Facile, Solvent-Free and One-Pot Protocol,” Molecular Diversity 19, no. 1 (2015): 87–101. doi:10.1007/s11030-014-9559-x
  • D. Issa and K. Rasul Braiem, “Green and Highly Efficient Synthetic Approach for the Synthesis of 4-Aminoantipyrine Schiff Bases,” Chemical Review and Letters 6, no. 1 (2022): 2–6. doi:10.22034/crl.2022.347066.1171
  • A.B. Ribeiro, V.D.S. Bolzani, M. Yoshida, L.S. Santos, M.N. Eberlin, and D.H.S. Silva, “A New Neolignan and Antioxidant Phenols from Nectandra Grandiflora,” Journal of the Brazilian Chemical Society 16, no. 3b (2005): 526–30. doi:10.1590/S0103-50532005000400005
  • C.B.S. Lau, C.Y. Ho, C.F. Kim, K.N. Leung, K.P. Fung, T.F. Tse, H.H.L. Chan, and M.S.S. Chow, “Cytotoxic Activities of Coriolus Versicolor (Yunzhi) Extract on Human Leukemia and Lymphoma Cells by Induction of Apoptosis,” Life Sciences 75, no. 7 (2004): 797–808. doi:10.1016/j.lfs.2004.04.001
  • M. Sylvestre, J. Legault, D. Dufour, and A. Pichette, “Chemical Composition and Anticancer Activity of Leaf Essential Oil of Myrica Gale L,” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 12, no. 4 (2005): 299–304. doi:10.1016/j.phymed.2003.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.