292
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Non-Modular Approach to Visual Space Perception

&

References

  • Aloimonos, J., & Shulman, D. (1989). The integration of visual modules. New York, NY: Academic Press.
  • Andersen, G. J., Braunstein, M. L., & Saidpour, A. (1998). The perception of depth and slant from texture in three-dimensional scenes. Perception, 27, 1087–1106.
  • Barrow, H. G., & Tenenbaum, J. M. (1978). Recovering intrinsic scene characteristics from images. In A. Hanson & E. Riseman (Eds.), Computer vision systems (pp. 3–26). New York, NY: Academic Press.
  • Berkeley, G. (1910). A new theory of vision and other writings. New York, NY: Dutton. ( Original work published 1709)
  • Bertamini, M., Yang, T. L., & Proffitt, D. R. (1998). Relative size perception at a distance is best at eye level. Perception & Psychophysics, 60, 673–682.
  • Blake, A., Bulthoff, H. H., & Sheinberg, D. (1993). Shape from texture: Ideal observers and human psychophysics. Vision Research, 33, 1723–1737.
  • Bradshaw, M. F., Hibbard, P. B., & Gillam, B. J. (2002). Perceptual latencies to discriminate surface orientation in stereopsis. Perception & Psychophysics, 64, 32–40.
  • Bradshaw, M. F., & Rogers, B. J. (1996). The interaction of binocular disparity and motion parallax in the computation of depth. Vision Research, 36, 3457–3468.
  • Bruno, N., & Cutting, J. E. (1988). Minimodularity and the perception of layout. Journal of Experimental Psychology: General, 117, 161–170.
  • Bulthoff, H. H. (1991). Shape from X: Psychophysics and computation. In M. S. Landy & J. A. Movshon (Eds.), Computational models of visual processing (pp. 305–330). Cambridge, MA: MIT Press.
  • Bulthoff, H. H., & Mallot, H. A. (1988). Integration of depth modules: Stereo and shading. Journal of the Optical Society of America, 5, 1749–1758.
  • Constantine, L. L., & Barnett, T. O. (Eds.). (1968). Modular programming: Proceedings of a national symposium. Cambridge, MA: Information & Systems Press. Cited in Besnard, D., Gacek, C., & Jones, C. (2006). Structure for dependability: Computer-based systems from an interdisciplinary perspective. Berlin, Germany: Springer.
  • Cutting, J. E., & Millard, R. T. (1984). Three gradients and the perception of flat and curved surfaces. Journal of Experimental Psychology: General, 113, 198–216.
  • Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein & S. Rogers (Eds.), Perception of space and motion (pp. 69–117). New York, NY: Academic Press.
  • Danilova, M. V., & Mollon, J. D. (2003). Comparison at a distance. Perception, 32, 395–414.
  • Descartes, R. (1965). Discourse on method, optics, geometry, and meteorology (P. J. Olscamp, Trans.). New York, NY: Bobbs-Merrill. ( Original work published 1637)
  • Domini, F., Caudek, C., & Tassinari, H. (2006). Stereo and motion information are not independently processed by the visual system. Vision Research, 46, 1707–1723.
  • Enright, J. T. (1991a). Exploring the third dimension with eye movements: Better than stereopsis. Vision Research, 31, 1549–1562.
  • Enright, J. T. (1991b). Stereo-thresholds: Simultaneity, target proximity and eye movements. Vision Reearch, 31, 2093–2100.
  • Flock, H. R. (1964). A possible optical basis of monocular slant perception. Psychological Review, 71, 380–391.
  • Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.
  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.
  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum. ( Original work published 1979)
  • Gibson, J. J., Olum, P., & Rosenblatt, F. (1955). Parallax and perspective during aircraft landings. American Journal of Psychology, 68, 372–385.
  • Gillam, B. J. (1967). Changes in the directions of induced aniseikonic slant as a function of distance. Vision Research, 7, 777–783.
  • Gillam, B. J. (1968). Perception of slant when perspective and stereopsis conflict: Experiments with aniseikonic lenses. Journal of Experimental Psychology, 78, 299–305.
  • Gillam, B. J. (1979). Even a possible figure can look impossible! Perception, 8, 229–232.
  • Gillam, B. J. (1995). The perception of spatial layout from static optical information. In W. Epstein, & S. Rogers (Eds.), Perception of space and motion (pp. 23–67). New York, NY: Academic Press.
  • Gillam, B. J. (2007). Stereopsis and motion parallax [Guest editorial]. Perception, 36, 953–954.
  • Gillam, B. J. (2011). Occlusion issues in early Renaissance art. i-Perception, 2, 1076–1097.
  • Gillam, B. J., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monocular gaps: Metrical encoding of depth and slant without matching contours. Vision Research, 39, 493–502.
  • Gillam, B. J., Chambers, D., & Russo, T. (1988). Post-fusional latency in stereoscopic slant perception and the primitives of stereopsis. Journal of Experimental Psychology: Human Perception and Performance, 14, 163–175.
  • Gillam, B. J., & Cook, M. L. (2001). Perspective based on stereopsis and occlusion. Psychological Science, 12, 424–429.
  • Gillam, B. J., Flagg, T., & Finlay, D. (1984). Evidence for disparity change as the primary stimulus for stereoscopic processing. Perception & Psychophysics, 36, 559–564.
  • Gillam, B. J., & Nakayama, K. (1999). Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone. Vision Research, 39, 109–112.
  • Gillam, B. J., & Ryan, C. (1992). Perspective, orientation disparity and anisotropy in stereoscopic slant perception. Perception, 21, 427–439.
  • Gillam, B. J., Sedgwick, H. A., & Marlow, P. (2011). Local and non-local effects in surface-mediated stereoscopic depth reception. Journal of Vision, 11, 1–14.
  • Glennerster, A., & McKee, S. P. (1999). Bias and sensitivity of stereo judgements in the presence of a slanted reference plane. Vision Research, 39, 3057–3069.
  • Gogel, W. C. (1956). Relative visual direction as a factor in relative distance perceptions. Psychological Monographs: General and Applied, 70, 1–19.
  • Gogel, W. C. (1963). The visual perception of size and distance. Vision Research, 3, 101–120.
  • Goodenough, B., & Gillam, B. (1997). Gradients as visual primitives. Journal of Experimental Psychology: Human Perception and Performance, 23, 370–387.
  • Gulick, W. L., & Lawson, R. B. (1976). Human stereopsis: A psychophysical analysis. New York, NY: Oxford University Press.
  • He, Z. J., & Nakayama, K. (1994). Apparent motion determined by surface layout not by disparity or three- dimensional distance. Nature, 367, 173–175.
  • Helmholtz, H. V. (1962). Treatise on physiological optics (J. P. C. Southall, Trans.). New York, NY: Dover. ( Original work published 1925)
  • Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: Optimal cue combination. Journal of Vision, 4, 967–992.
  • Hochberg, J. (1968). In the mind's eye. In R. N. Haber (Ed.), Contemporary theory and research in visual perception (pp. 309–331). New York, NY: Holt, Rinehart and Winston.
  • Holliday, I. E., & Braddick, O. J. (1991). Pre-attentive detection of a target defined by stereoscopic slant. Perception, 20, 355–362.
  • Horn, B. K. P. (1975). Obtaining shape from shading information. In P. H. Winston (Ed.), The psychology of computer vision (pp. 115–155). New York, NY: McGraw-Hill.
  • Horn, B. K. P., & Brooks, M. J. (Eds.). (1989). Shape from shading. Cambridge, MA: MIT Press.
  • Humphrey, G. K., Symons, L. A., Herbert, A. M., & Goodale, M. A. (1996). A neurological dissociation between shape from shading and shape from edges. Behavioral Brain Research, 76, 117–125.
  • Ikeuchi, K., & Horn, B. K. P. (1989). Numerical shape from shading and occluding boundaries. In B. K. P. Horn, & M. J. Brooks (Eds.), Shape from shading (pp. 245–299). Cambridge, MA: MIT Press.
  • Julesz, B. (1971). Foundations of cyclopean perception. Chicago, IL: University of Chicago Press.
  • Kepler, J. (1962). Diotrice (J. P. C. Southall, Ed. & Trans.). New York, NY: Dover. ( Original work published 1611)
  • Kepler, J. (2000). Optics: Paralipomena to Witelo & optical part of astronomy (W. H. Donahue, Trans.). Santa Fe, NM: Green Lion Press. (Original work published 1604)
  • Knill, D. C. (1998). Surface orientation from texture: Ideal observers, generic observers and the information content of texture cues. Vision Research, 38, 1655–1682.
  • Knill, D. C., & Saunders, J. A. (2003). Do humans optimally integrate stereo ad texture information for judgments of surface slant? Vision Research, 25, 2539–2558.
  • Koenderink, J. J. (1985). Space, form and optical deformations. In D. Ingle, M. Jeannerod, & D. Lee (Eds.), Brain mechanisms and spatial vision (pp. 31–58). Dordrecht, The Netherlands: Martinus Nijhof Publishers.
  • Koenderink, J. J., & van Doorn, A. J. (1976). Geometry of binocular vision and a model for stereopsis. Biological Cybernetics, 21, 29–35.
  • Koyré, A. (1957). From the closed world to the infinite universe. Baltimore, MD: Johns Hopkins Press.
  • Li, A., & Zaidi, Q. (1999). Shape from natural textures. Investigative Ophthalmology and Visual Science, 40, 398.
  • Marlow, P., & Gillam, B. J. (2011). Stereopsis loses dominance over relative size as target separation increases. Perception, 40, 1413–1427.
  • Marr, D. (1976). Early processing of visual information. Philosophical Transactions of the Royal Society of London B, 275, 483–519.
  • Marr, D. (1977). Analysis of occluding contour. Proceedings of the Royal Society of London B, 197, 441–475.
  • Marr, D. (1978). Representing visual information. In A. R. Hanson, & E. M. Riseman (Eds.), Computer vision systems (pp. 61–80). New York, NY: Academic Press.
  • Marr, D. (1982). Vision. San Francisco, CA: Freeman.
  • Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London B, 200, 269–294.
  • Meng, J. C., & Sedgwick, H. A. (2001). Distance perception mediated through nested contact relations among surfaces. Perception & Psychophysics, 63, 1–15.
  • Meng, J. C., & Sedgwick, H. A. (2002). Distance perception across spatial discontinuities. Perception & Psychophysics, 64, 1–14.
  • Mitchison, G. J., & McKee, S. P. (1990). Mechanisms underlying the anisotropy of stereoscopic tilt perception. Vision Research, 30, 1781–1791.
  • Mitchison, G. J., & Westheimer, G. (1984). The perception of depth in simple figures. Vision Research, 24, 1063–1073.
  • Mon-Williams, M., & Bingham, G. P. (2008). Ontological issues in distance perception: Cue use under full cue conditions cannot be inferred from use under controlled conditions. Perception & Psychophysics, 70, 551–561.
  • Nakayama, K., He, Z. J., & Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher-level vision. In S. M. Kosslyn, & D. N. Osherson (Eds.), Visual cognition: An invitation to cognitive science (2nd ed., Vol. 2, pp. 1–70). Cambridge, MA: MIT Press.
  • Nassi, J. J., & Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10, 360–372.
  • Pankanti, S., & Jain, A. K. (1995). Integrating vision modules: Stereo, shading, grouping, and line labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 831–842.
  • Purdy, W. C. (1960). The hypothesis of psychophysical correspondence in space perception (General Electric Technical Information Series No. R60ELC56). Ithaca, NY: General Electric Advanced Electronics Center.
  • Regan, D., Beverley, K. J., & Cynader, M. (1979). Stereoscopic subsystems for position in depth and for motion in depth. Proceedings of the Royal Society of London B, 204, 485–501.
  • Rogers, B. J., & Graham, M. E. (1983). Anisotropies in the perception of three-dimensional surfaces. Science, 221, 1409–1411.
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 66, 386–408.
  • Rosenblatt, F. (1962). Principles of neurodynamics. Wahsington, DC: Spartan Books.
  • Saunders, J. A., & Chen, Z. (2015). Perceptual biases and cue weighting in perception of 3-D slant from texture and stereo information. Journal of Vision, 15, 1–24.
  • Sedgwick, H. A. (1973). The visible horizon: A potential source of visual information for the perception of size and distance (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses database. (UMI No. 7322530)
  • Sedgwick, H. A. (1980). The geometry of spatial layout in pictorial representation. In M. Hagen (Ed.), The perception of pictures (Vol. 1, pp. 33–90). New York, NY: Academic Press.
  • Sedgwick, H. A. (1983). Environment-centered representation of spatial layout: Available visual information from texture and perspective. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 425–458). New York, NY: Academic Press.
  • Sedgwick, H. A. (1986). Space perception. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook of perception and human performance (Vol. 1, pp. 21-1–21-57). New York, NY: Wiley.
  • Sedgwick, H. A. (1987a). Layout 2: A production system modeling visual perspective information. Proceedings of the IEEE First International Conference on Computer Vision, London, UK.
  • Sedgwick, H. A. (1987b). A production system modeling high-level visual perspective information for spatial layout (Tech. Rep. No. 298). New York: New York University Department of Computer Science.
  • Sedgwick, H. A. (1989). Combining multiple forms of visual information to specify contact relations in spatial layout. In P. S. Shenker (Ed.), Sensor fusion II: Human and machine strategies. Proceedings of the SPIE, 1198, 447–458.
  • Sedgwick, H. A. (2001). Visual space perception. In E. B. Goldstein (Ed.), Blackwell handbook of perception (pp. 128–167). Oxford, UK: Blackwell Publishers.
  • Sedgwick, H. A. (2010). Spatial layout perception, psychophysical. In E. B. Goldstein (Ed.), Sage encyclopedia of perception (pp. 908–914). Thousand Oaks, CA: Sage Publications.
  • Sedgwick, H. A., & Levy, S. (1985). Environment-centered and viewer-centered perception of surface orientation. Computer Vision, Graphics, and Image Processing, 31, 248–260.
  • Sinai, M. J., Ooi, T. L., & He, Z. J. (1998). Terrain influences the accurate judgement of distance. Nature, 395, 497–500.
  • Todd, J. T., & Mingolla, E. (1983). Perception of surface curvature and direction of illumination from patterns of shading. Journal of Experimental Psychology: Human Perception and Performance, 9, 583–595.
  • Todd, J. T., & Reichel, F. D. (1989). Ordinal structure in the visual perception and cognition of smoothly curved surfaces. Psychological Review, 96, 643–657.
  • Van Ee, R., & Erkelens, C. J. (1996). Temporal aspects of binocular slant perception. Vision Research, 36, 43–51.
  • Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science, 255, 419–423.
  • Vickers, D. (1971). Perceptual economy and the impression of visual depth. Perception & Psychophysics, 10, 23–27.
  • Wardle, S. G., & Gillam, B. J. (2016). Gradients of relative disparity underlie the perceived slant of stereoscopic surfaces. Journal of Vision, 16, 1–13.
  • Welchman, A., Deubelius, A., Conrad, V., Bulthoff, H. H., & Kourtzi, Z. (2005). 3-D shape perception from combined depth cues in human visual cortex. Nature Neuroscience, 8, 820–827.
  • Wheatstone, C. (1838). Contributions to the physiology of vision: I. On some remarkable and hitherto unobserved phenomena of binocular vision. Philosophical Transactions of the Royal Society, 128, 371–394.
  • Wirth, N. (1977). Modula: A language for modular multiprogramming. Software: Practice and Experience, 7, 1–35.
  • Wraga, M. (1999). Using eye height in different postures to scale the heights of objects. Journal of Experimental Psychology: Human Perception and Performance, 25, 518–530.
  • Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274, 423–428.
  • Zeki, S. (1993). A vision of the brain. Oxford, UK: Blackwell Scientific.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.