Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 50, 2006 - Issue 2
333
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Natural Convection in a Cubic Cavity: Implicit Numerical Solution of Two Benchmark Problems

&
Pages 99-123 | Received 26 Aug 2005, Accepted 05 Jan 2006, Published online: 23 Sep 2006

REFERENCES

  • G. de Vahl Davis , Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution , Int. J. Numer. Meth. Fluids , vol. 3 , pp. 249 – 264 , 1983 . [CSA]
  • Web of Science, http://www.isiknowledge.com/wos/(accessed April 11, 2005) .
  • K. M. Khanafer and A. J. Chamka , Hydromagnetic Natural Convection from an Inclined Porous Square Enclosure with Heat Generation , Numer. Heat Transfer A , vol. 33 , pp. 891 – 909 , 1998 . [CSA]
  • R. Bennacer , H. Beji , F. Oueslati , and A. Belghith , Multiple Natural Convection Solution in Porous Media under Cross Temperature and Concentration Gradients , Numer. Heat Transfer A , vol. 39 , pp. 553 – 567 , 2001 . [CSA]
  • N. H. Saeid and I. Pop , Transient Free Convection in a Square Cavity Filled with a Porous Medium , Int. J. Heat Mass Transfer , vol. 47 , pp. 1917 – 1924 , 2004 . [CSA] [CROSSREF]
  • M. A. R. Sharif and W. Liu , Numerical Study of Turbulent Natural Convection in a Side-Heated Square Cavity at Various Angles of Inclination , Numer. Heat Transfer A , vol. 43 , pp. 693 – 716 , 2003 . [CSA] [CROSSREF]
  • A. Sergent , P. Joubert , and P. Le Quere , Development of a Local Subgrid Diffusivity Model for Large-Eddy Simulation of Buoyancy-Driven Flows: Application to a Square Differentially Heated Cavity , Numer. Heat Transfer A , vol. 44 , pp. 789 – 810 , 2003 . [CSA]
  • E. J. Braga and M. J. S. de Lemos , Turbulent Natural Convection in a Porous Square Cavity Computed with a Macroscopic Kappa-Epsilon Model , Int. J. Heat Mass Transfer , vol. 47 , pp. 5639 – 5650 , 2004 . [CSA] [CROSSREF]
  • J. H. Bae , J. M. Hyun , and H. S. Kwak , Buoyant Convection in a Cavity with a Baffle under Time–Periodic Wall Temperature , Numer. Heat Transfer A , vol. 39 , pp. 723 – 736 , 2001 . [CSA]
  • E. V. Kalabin , M. V. Kanashina , and P. T. Zubkov , Natural–Convective Heat Transfer in a Square Cavity with Time-Varying Side-Wall Temperature , Numer. Heat Transfer A , vol. 47 , pp. 621 – 631 , 2005 . [CSA] [CROSSREF]
  • G. D. Mallinson and G. de Vahl Davis , Three-Dimensional Natural Convection in a Box: A Numerical Study , J. Fluid Mech. , vol. 83 , pp. 1 – 31 , 1977 . [CSA] [CROSSREF]
  • D. W. Pepper , Modeling of Three-Dimensional Natural Convection with a Time-Split Finite-Element Technique , Numer. Heat Transfer , vol. 11 , pp. 31 – 55 , 1987 . [CSA]
  • T. Fusegi , J. M. Hyun , K. Kuwahara , and B. Farouk , A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure , Int. J. Heat Mass Transfer , vol. 34 , pp. 1543 – 1557 , 1991 . [CSA] [CROSSREF]
  • A. Ern and M. D. Smooke , Vorticity–Velocity Formulation for Three-Dimensional Steady Compressible Flows , J. Comput. Phys. , vol. 105 , pp. 58 – 71 , 1993 . [CSA] [CROSSREF]
  • D. Lee and C. L. Yeh , A Hybrid Adaptive Gridding Procedure for Three-Dimensional Flow Problems, Comput. Fluids , vol. 23, pp. 39–53, 1994. [CSA] [CROSSREF]
  • C. J. Ho and F. H. Lin , Simulation of Natural Convection in a Vertical Enclosure by Using a New Incompressible Flow Formulation: Pseudovorticity-Velocity Formulation , Numer. Heat Transfer A , vol. 31 , pp. 881 – 896 , 1997 . [CSA]
  • W. H. Leong , K. G. T. Hollands , and A. P. Brunger , On a Physically–Realizable Benchmark Problem in Internal Natural Convection , Int. J. Heat Mass Transfer , vol. 41 , pp. 3817 – 3828 , 1998 . [CSA] [CROSSREF]
  • E. Tric , G. Labrosse , and M. Betrouni , A First Incursion into the 3D Structure of Natural Convection of Air in a Differentially Heated Cubic Cavity, from Accurate Numerical Solutions , Int. J. Heat Mass Transfer , vol. 43 , pp. 4043 – 4056 , 2000 . [CSA] [CROSSREF]
  • J. Pallares , I. Cuesta , and F. X. Grau , Laminar and Turbulent Rayleigh–Bénard Convection in a Perfectly Conducting Cubical Cavity , Int. J. Heat Fluid Flow , vol. 23 , pp. 346 – 358 , 2002 . [CSA] [CROSSREF]
  • T. Sophy , H. Sadat , and C. Prax , A Meshless Formulation for Three-Dimensional Laminar Natural Convection , Numer. Heat Transfer B , vol. 41 , pp. 433 – 445 , 2002 . [CSA] [CROSSREF]
  • Y. Peng , C. Shu , and Y. T. Chew , A 3D Incompressible Thermal Lattice Boltzmann Model and Its Application to Simulate Natural Convection in a Cubic Cavity , J. Comput. Phys. , vol. 193 , pp. 260 – 274 , 2003 . [CSA] [CROSSREF]
  • S. Wakashima and T. S. Saitoh , Benchmark Solutions for Natural Convection in a Cubic Cavity Using the High-Order Time-Space Method , Int. J. Heat Mass Transfer , vol. 47 , pp. 853 – 864 , 2004 . [CSA] [CROSSREF]
  • S. Pimpalnerkar , M. Kulkarni , and A. W. Date , Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables, Part II: Applications , Int. J. Heat Mass Transfer , vol. 48 , pp. 1128 – 1136 , 2005 . [CSA] [CROSSREF]
  • T. Fusegi and J. M. Hyun , Laminar and Transitional Natural Convection in an Enclosure with Complex and Realistic Conditions , Int. J. Heat Fluid Flow , vol. 15 , pp. 258 – 268 , 1994 . [CSA] [CROSSREF]
  • W. H. Leong , K. G. T. Hollands , and A. P. Brunger , Experimental Nusselt Numbers for a Cubical-Cavity Benchmark Problem in Natural Convection , Int. J. Heat Mass Transfer , vol. 42 , pp. 1979 – 1989 , 1999 . [CSA] [CROSSREF]
  • M. A. H. Mamun , W. H. Leong , K. G. T. Hollands , and D. A. Johnson , Cubical-Cavity Natural-Convection Benchmark Experiments: An Extension , Int. J. Heat Mass Transfer , vol. 46 , pp. 3655 – 3660 , 2003 . [CSA] [CROSSREF]
  • D. W. Pepper and K. G. T. Hollands , Summary of Benchmark Numerical Studies for 3-D Natural Convection in an Air-Filled Enclosure , Numer. Heat Transfer A , vol. 42 , pp. 1 – 11 , 2002 . [CSA] [CROSSREF]
  • R. B. Bird , W. E. Stewart , and E. N. Lightfoot , Transport Phenomena , Wiley , New York , 1960 .
  • H. Fasel , Investigation of the Stability of Boundary Layers by a Finite–Difference Model of the Navier-Stokes Equations , J. Fluid Mech. , vol. 78 , pp. 355 – 383 , 1976 . [CSA] [CROSSREF]
  • B. A. V. Bennett , Adaptive Numerical Modeling of Natural Convection, Conduction, and Solidification within Mold Cavities , submitted , 2005 .
  • M. D. Smooke , R. E. Mitchell , and D. E. Keyes , Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames , Combustion Sci. Technol. , vol. 67 , pp. 85 – 122 , 1989 . [CSA]
  • A. Ern , V. Giovangigli , D. E. Keyes , and M. D. Smooke , Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic Problems , SIAM J. Sci. Comput. , vol. 15 , pp. 681 – 703 , 1994 . [CSA] [CROSSREF]
  • K. L. Wong and A. J. Baker , A 3D Incompressible Navier-Stokes Velocity–Vorticity Weak Form Finite Element Algorithm , Int. J. Numer. Meth. Fluids , vol. 38 , pp. 99 – 123 , 2002 . [CSA] [CROSSREF]
  • P. Deuflhard , A Modified Newton Method for the Solution of Ill–Conditioned Systems of Nonlinear Equations with Application to Multiple Shooting, Numer. Math. , vol. 22, pp. 289–315, 1974. [CSA] [CROSSREF]
  • H. A. van der Vorst , Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , SIAM J. Sci. Stat. Comput. , vol. 13 , pp. 631 – 644 , 1992 . [CSA] [CROSSREF]
  • M. D. Smooke , Error Estimate for the Modified Newton Method with Applications to the Solution of Nonlinear, Two-Point Boundary Value Problems , J. Optim. Theory Appl. , vol. 39 , pp. 489 – 511 , 1983 . [CSA] [CROSSREF]
  • M. D. Smooke , R. E. Mitchell , and R. J. Kee , Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methods , in U. M. Ascher and R. D. Russell (eds.), Numerical Boundary Value ODEs , pp. 303 – 317 , Birkhäuser , Boston , 1985 .
  • A. Ern and M. D. Smooke , personal communication , 1994 .
  • B. A. V. Bennett and M. D. Smooke , Local Rectangular Refinement with Application to Nonreacting and Reacting Fluid Flow Problems , J. Comput. Phys. , vol. 151 , pp. 684 – 727 , 1999 . [CSA] [CROSSREF]
  • C. Pozrikidis , Introduction to Theoretical and Computational Fluid Dynamics , Oxford University Press , New York , 1997 .
  • G. J. Hirasaki and J. D. Hellums , A General Formulation of Boundary Conditions on Vector Potential in 3-Dimensional Hydrodynamics , Q. Appl. Math. , vol. 26 , pp. 331 – 342 , 1968 . [CSA]
  • S. M. Richardson and A. R. H. Cornish , Solution of Three-Dimensional Incompressible Flow Problems , J. Fluid. Mech. , vol. 82 , pp. 309 – 319 , 1977 . [CSA] [CROSSREF]
  • R. Benneccer , A. A. Mohamad , and I. Sezai , Transient Natural Convection in Air-Filled Cubical Cavity: Validation Exercise , in Proc. ICHMT 2nd Int. Symp. on Advances in Computational Heat Transfer , Palm Cove , Queensland , Australia , 2001 . Results reported in [27] .
  • R. Mossad , Prediction of Natural Convection in an Air–Filled Cubical Cavity Using FLUENT Software , in Proc. ICHMT 2nd Int. Symp. on Advances in Computational Heat Transfer , Palm Cove , Queensland , Australia , 2001 . Results reported in [27] .
  • N. Solanki , D. M. Wang , and A. K. Singhal , Simulation of Natural Convection in an Air-Filled Cubical Cavity using CFD-ACE+ , in Proc. ICHMT 2nd Int. Symp. on Advances in Computational Heat Transfer , Palm Cove , Queensland , Australia , 2001 . Results reported in [27] .
  • E. Krepper , CHT'01 Validation Exercise: Natural Convection in an Air–Filled Cubical Cavity , in Proc. ICHMT 2nd Int. Symp. on Advances in Computational Heat Transfer , Palm Cove , Queensland , Australia , 2001 . Results reported in [27] .
  • C. Xia , J. Y. Murthy , and S. R. Mathur , Finite Volume Computations of Buoyancy-Driven Flow in a Cubical Cavity: A Benchmarking Exercise , in Proc. ICHMT 2nd Int. Symp. on Advances in Computational Heat Transfer , Palm Cove , Queensland , Australia , 2001 . Results reported in [27] .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.