Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 11
378
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Two-Phase Analysis of A Helical Microchannel Heat Sink Using Nanofluids

, &
Pages 1266-1279 | Received 27 Sep 2014, Accepted 22 Oct 2014, Published online: 23 Jun 2015

REFERENCES

  • D. B. Tuckerman and R. F. W. Pease High-Performance Heat Sinking for VLSI, IEEE: Electron Device Letters, vol. 2, no. 5, pp. 126–129, 1981.
  • D. B. Tuckerman and R. F. W. Pease Ultrahigh Thermal Conductance Microstructures for Cooling Integrated Circuits, Proc. 32nd Electron. Comp. Conf. IEEE, EIA & CHMT, San Diego, CA, pp. 145–149, 1998.
  • O. Abouali and N. Baghernezhad Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces, J. Heat Transf., vol. 4, pp. 132, 2010.
  • H. A. Mohammed and K. Narrein Thermal and Hydraulic Characteristics of Nanofluid Flow in a Helically Coiled Tube Heat Exchanger, Int. Comm. Heat Mass Transf., vol. 39, pp. 1375–1383, 2012.
  • S. P. Jang and S. U. S. Choi Cooling Performance of a Microchannel Heat Sink With Nanofluids, App Therm. Eng., vol. 26, pp. 2457–2463, 2006.
  • T. M. Harms, M. J. Kazmierczak, and F. M. Gerner Developing Convective Heat Transfer in Deep Rectangular Microchannel, Int. J. Heat Fluid Flow, vol. 20, pp. 149–157, 1999.
  • G. L. Morini Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results, Int. J. Therm. Sci., vol. 43, pp. 631–651, 2004.
  • K. Narrein and H. A. Mohammed Influence of Nanofluids and Rotation in Helically Coiled Tube Heat Exchanger, Thermochimica Acta, vol. 564, pp. 13–23, 2013.
  • R. C. Xin, A. A. Awwad, Z. F. Dong, M. A. Ebadian, and H. M. Soliman An Investigation and Comparative Study of the Pressure Drop in Air-Water Two-Phase Flow in Vertical Helicoidal, Int. J. Heat Mass Transf., vol. 39, pp. 735–743, 1996.
  • K. Liu, Y. Qing, H. Shengguan, C. Feng, Z. Yulong, F. Xiaole, L. Lei, S. Chao, and B. Hao A High-Efficiency Three-Dimensional Helical Micromixer in Fused Silica, Microsystem Tech., vol. 19, no. 7, pp. 1033–1040, 2013.
  • Y. Xi, Y. Jianzu, X. Yongqi, and G. Hongxia Single-Phase Flow and Heat Transfer in Swirl Microchannels, Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1309–1315, 2010.
  • J. C. Chu, T. T. Jyh, and G. Ralph Experimental and Numerical Study on the Flow Characteristics in Curved Rectangular Microchannels, App. Therm. Eng., vol. 30, no. 13, pp. 1558–1566, 2010.
  • J. C. Chu, T. T. Jyh, T. X. Ting, H. Suyi, J. Shiping, F. Y. Xiang, D. Thanhtrung, P. Z. Chun, and G. Ralph Characterization of Frictional Pressure Drop of Liquid Flow through Curved Rectangular Microchannels, Exp. Therm. Fluid Sci., vol. 38, pp. 171–183, 2012.
  • T. S. Sheu, J. C. Sin, and J. C. Jyh Mixing of a Split and Recombine Micromixer with Tapered Curved Microchannels, Chem. Eng. Sci., vol. 71, pp. 321–332, 2012.
  • J. Li and C. Kleinstreuer Thermal Performance of Nanofluid Flow in Microchannels, Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1221–1232, 2008.
  • H. R. Seyf and M. Feizbakhshi Computational Analysis of Nanofluid Effects on Convective Heat Transfer Enhancement of Micro-Pin-Fin Heat sinks, Int. J. Therm. Sci., vol. 58, no. 0, pp. 168–179, 2012.
  • S. A. Fazeli, S. M. H. Hashemi, H. Zirakzadeh, and M. Ashjaee Experimental and Numerical Investigation of Heat Transfer in a Miniature Heat Sink Utilizing Silica Nanofluid, Superlattices Microstruct., vol. 51, no. 2, pp. 247–264, 2012.
  • J. Koo and C. Kleinstreuer Laminar Nanofluid Flow in Microheat-Sinks, Int. J. Heat Mass Transf., vol. 48, no. 13, pp. 2652–2661, 2005.
  • S. P. Jang and S. U. S. Choi Cooling Performance of a Microchannel Heat Sink With Nanofluids, App. Therm. Eng., vol. 26, no. 17–18, pp. 2457–2463, 2006.
  • M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, and J. Harting Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink, App. Therm. Eng., vol. 36, no. 0, pp. 260–268, 2012.
  • R. Lotfi, Y. Saboohi, and A. M. Rashidi Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches, Int. Comm. Heat Mass Transfer, vol. 37, pp. 74–78, 2010.
  • M. Corcione, M. Cianfrini, and A. Quintino Two-Phase Mixture Modeling of Natural Convection of Nanofluids with Temperature-Dependent Properties, Int. J. Therm. Sci., vol. 71, pp. 182–195, 2013.
  • S. Z. Heris, M. N. Esfahany, and G. Eternad Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through Circular Tube, Numer. Heat Transf. A, vol. 52, no. 11, pp. 1043–1059, 2007.
  • M. Akhtari, M. Haghshenasfard, and M. R. Talaie Numerical and Experimental Investigation of Heat Transfer of α-Al2O3/Water Nanofluid in Double Pipe and Shell and Tube Heat Exchangers, Numer. Heat Transf. A, vol. 63, no. 12, pp. 941–958, 2013.
  • S. K. Choi, S. O. Kim, T. H. Lee, and D. Hahn Computation of the Natural Convection of Nanofluid in a Square Cavity with Homogeneous and Nonhomogeneous Models, Numer. Heat Transf. A, vol. 65, no. 4, pp. 287–301, 2014.
  • R. Nasrin, M. A. Alim, and A. J. Chamka Numerical Simulation of Non-Darcy Convection through a Channel with Nonuniform Heat Flux in an Open Cavity Using Nanofluid, Numer. Heat Transf. A, vol. 64, no. 10, pp. 820–840, 2013.
  • M. K. Moraveji and M. Hejazian CFD Examination of Convective Heat Transfer and Pressure Drop in a Horizontal Helically Coiled Tube with CuO/Oil Base Nanofluid, Numer. Heat Transf. A, vol. 66, no. 3, pp. 315–329, 2014.
  • T. Yamada, Y. Asoka, O. J. Gregory, and M. Faghri Simulation of Thermal Conductivity of Nanofluids Using Dissipative Particle Dynamics, Numer. Heat Transf. A, vol. 61, no. 5, pp. 323–337, 2012.
  • Y. Zhang, L. Li, H. B. Ma, and M. Yang Effect of Brownian and Thermophoretic Diffusion of Nanoparticles on Nonequilibrium Heat Conduction in a Nanofluid Layer with Periodic Heat Flux, Numer. Heat Transf. A, vol. 56, no. 4, pp. 325–341, 2009.
  • A. J. Chamka and M. A. Ismael Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled with a Nanofluid, Numer. Heat Transf. A, vol. 65, no. 11, pp. 1089–1113, 2014.
  • Fluent 6 User's Guide, Lebanon, NH, Fluent Inc., 2000.
  • M. Corcione Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls, Int. J. Therm. Sci., vol. 49, pp. 1536–1546, 2010.
  • J. A. M. Kuipers, W. Prins, and W. P. M. van Swaaij Numerical Calculation of Wall-Tobed Heat-Transfer Coefficients in Gas-Fluidized Beds, AIChE J., vol. 38, pp. 1079–1091, 1992.
  • D. Wen and Y. Ding Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions, Int. J. Heat Mass Transf., vol. 47, pp. 5181–5188, 2004.
  • S. T. Poh, and E. Y. K. Ng Heat Transfer and Flow Issues in Manifold Microchannel Heat Sinks: A CFD Approach, Proc. 2nd Electron. Packag. Technol. Conf., IEEE, Singapore, pp. 246–250, 1998.
  • W. M. Kays and M. E. Crawford Convective Heat and Mass Transfer, 3rd ed., pp. 125, McGraw-Hill, New York, NY, 1993.
  • J. M. Svino and R. Siegel Laminar Forced Convection in Rectangular Channels With Unequal Heat Addition on Adjacent Sides, Int. J. Heat Mass Transf., vol. 16, pp. 733–741, 1964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.