Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 3
432
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

A CFD-derived correlation for methane heat transfer deterioration

Pages 242-264 | Received 08 Apr 2015, Accepted 30 May 2015, Published online: 30 Nov 2015

References

  • G. P. Sutton, History of Liquid Propellant Rocket Engines, AIAA, Reston, VA, 2006.
  • P. Caisso, A. Souchier, C. Rothmund, P. Alliot, C. Bonhomme, W. Zinner, R. Parsley, T. Neill, S. Forde, R. Starke, W. Wang, M. Takahashi, M. Atsumi, and D. Valentian, A Liquid Propulsion Panorama, Acta Astronaut., vol. 65, pp. 1723–1737, 2009.
  • M. Pizzarelli, F. Nasuti, M. Onofri, P. Roncioni, R. Votta, and F. Battista Heat Transfer Modeling for Supercritical Methane Flowing in Rocket Engine Cooling Channels, Appl. Therm. Eng., vol. 75, pp. 600–607, 2015.
  • I. Pioro and R. Duffey, Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey), Nucl. Eng. Des., vol. 235, pp. 2407–2430, 2005.
  • R. Duffey, and I. Pioro, Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey), Nucl. Eng. Des., vol. 235, pp. 913–924, 2005.
  • R. Hendricks, R. Graham, Y. Hsu, and R. Friedman, Experimental Heat-Transfer Results for Cryogenic Hydrogen Flowing in Tubes at Subcritical and Supercritical Pressures to 800 Pounds Per Square Inch Absolute, NASA TN D-3095, Hampton, VA, 1966.
  • W. B. Powell, Heat Transfer to Fluids in the Region of the Critical Temperature, Jet Propul., vol. 27, pp. 776–783, 1957.
  • R. Spencer and D. Rousar, Supercritical Oxygen Heat Transfer, NASA CR-135339, Sacramento, CA, 1977, Final Report Aerojet Liquid Rocket Co.
  • A. Giovanetti, L. Spadaccini, and E. Szetela, Deposit Formation and Heat-Transfer Characteristics of Hydrocarbon Rocket Fuels, NASA CR-168277, 1983.
  • R. Cook, Methane Heat Transfer Investigation, NASA CR-171051, Hampton, VA, 1984.
  • K. Liang, B. Yang, and Z. Zhang, Investigation of Heat Transfer and Coking Characteristics of Hydrocarbon Fuels, J. Propul. Power, vol. 14, pp. 789–796, 1998.
  • H. Gu, H. Li, H. Wang, and Y. Luo, Experimental Investigation on Convective Heat Transfer from a Horizontal Miniature Tube to Methane at Supercritical Pressures, Appl. Therm. Eng., vol. 58, pp. 490–498, 2013.
  • J. Y. Yoo, The Turbulent Flows of Supercritical Fluids with Heat Transfer, Annu. Rev. Fluid Mech., vol. 45, pp. 495–525, 2013.
  • H. Li, A. Kruizenga, M. Anderson, M. Corradini, Y. Luo, H. Wang, and H. Li, Development of a New Forced Convection Heat Transfer Correlation for CO2 in Both Heating and Cooling Modes at Supercritical Pressures, Int. J. Therm. Sci., vol. 50, pp. 2430–2442, 2011.
  • M. Pizzarelli, A. Urbano, and F. Nasuti, Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants, Numer. Heat Transfer, Part A: Appl., vol. 57, pp. 297–314, 2010.
  • Y.-Z. Wang, Y.-X. Hua, and H. Meng, Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane, J. Thermophys. Heat Transfer, vol. 24, pp. 490–500, 2010.
  • M. Pizzarelli, F. Nasuti, and M. Onofri, CFD Analysis of Transcritical Methane in Rocket Engines Cooling Channels, J. Supercrit. Fluids, vol. 62, pp. 79–87, 2012.
  • L. Wang, Z. Chen, and H. Meng, Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressures, Appl. Therm. Eng., vol. 54, pp. 237–246, 2013.
  • F. W. Dittus and L. K. M. Boelter, Heat Transfer in Automobile Radiators of the Tubular Type, Publ. Eng., vol. 2, pp. 443–461, 1930.
  • J. Jackson, Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure, Nucl. Eng. Des., vol. 264, pp. 24–40, 2013.
  • V. Kurganov, Y. Zeigarnik, and I. Maslakova, Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants. Part I: Specifics of Thermophysical Properties of Supercritical Pressure Fluids and Turbulent Heat Transfer under Heating Conditions in Round Tubes (State of the Art), Int. J. Heat Mass Transfer, vol. 55, pp. 3061–3075, 2012.
  • R. D. Wood and J. Smith, Heat Transfer in the Critical Region – Temperature and Velocity Profiles in Turbulent Flow, AIChE J., vol. 10, pp. 180–186, 1964.
  • J. Jackson and W. Hall, Influence of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes under Turbulent Conditions, in S. Kakac and D. B. Spalding, Turbulent Forced Convection in Channels and Bundles, vol. 2, pp. 613–640, Hemisphere, USA, 1979.
  • B. Petukhov, V. Kurganov, and V. Ankudinov, Heat Transfer and Flow Resistance in the Turbulent Pipe Flow of a Fluid with Near-Critical State Parameters, Teplofizika Vysokikh Temperatur, vol. 21, pp. 92–100, 1983.
  • M. Y. Salam, Measurement of the Viscous Sublayer in Near-Separated Flows, Appl. Sci. Res., vol. 39, pp. 337–347, 1982.
  • P. Spalart and S. Allmaras, A One-Equation Turbulence Model for Aerodynamic Flows, La Recherche Aerospatiale, vol. 1, pp. 5–21, 1994.
  • E. Bigarella and J. Azevedo, Advanced Eddy-Viscosity and Reynolds-Stress Turbulence Model Simulations of Aerospace Applications, AIAA J., vol. 45, pp. 2369–2390, 2007.
  • M. Pizzarelli, Effectiveness of Spalart-Allmaras Turbulence Model in Analysis of Curved Cooling Channels, AIAA J., vol. 51, pp. 2158–2167, 2013.
  • M. Pizzarelli, F. Nasuti, and M. Onofri, Effect of Cooling Channel Aspect Ratio on Rocket Thermal Behavior, J. Thermophys. Heat Transfer, vol. 28, pp. 410–416, 2014.
  • C. Merkle, J. Sullivan, P. Buelow, and S. Venkateswaran, Computation of Flows with Arbitrary Equation of State, AIAA J., vol. 36, pp. 515–521, 1998.
  • B. A. Younglove, Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen, J. Phys. Chem. Ref. Data, vol. 11, pp. 1–353, 1982.
  • B. Younglove and J. Ely, Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, vol. 16, pp. 577–798, 1987.
  • R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, NY, 1960.
  • M. Pizzarelli, F. Nasuti, and M. Onofri, Coupled Wall Heat Conduction and Coolant Flow Analysis for Liquid Rocket Engines, J. Propul. Power, vol. 29, pp. 34–41, 2013.
  • I. Pioro, H. Khartabil, and R. Duffey, Heat Transfer to Supercritical Fluids Flowing in Channels – Empirical Correlations (Survey), Nucl. Eng. Des., vol. 230, pp. 69–91, 2004.
  • A. J. Giovanetti, L. J. Spadaccini, and E. J. Szetela, Deposit Formation and Heat-Transfer Characteristics of Hydrocarbon Rocket Fuels, J. Spacecraft Rockets, vol. 22, pp. 574–580, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.