Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 4
234
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Thermal optimization of a tubular linear oscillating motor for directly driven LEHA application

, , &
Pages 383-400 | Received 31 Mar 2015, Accepted 10 Jun 2015, Published online: 30 Nov 2015

References

  • M. Yoon, C. Jeon, and S. K. Kauh, Efficiency Increase of an Induction Motor by Improving Cooling Performance, Energy Convers., IEEE Trans., vol. 17, no. 1, pp. 1–6, 2002.
  • T. Nakahama, K. Suzuki, S. Hashidume, F. Ishibashi, and M. Hirata, Cooling Airflow in Unidirectional Ventilated Open-Type Motor for Electric Vehicles, Energy Convers., IEEE Trans., vol. 21, no. 3, pp. 645–651, 2006.
  • H. Li, Cooling of a Permanent Magnet Electric Motor with a Centrifugal Impeller, Int. J. Heat Mass Transfer, vol. 53, no. 4, pp. 797–810, 2010.
  • C. C. Chang, Y. F. Kuo, J. C. Wang, and S. L. Chen, Air Cooling for a Large-Scale Motor, Appl. Therm. Eng., vol. 30, no. 11, pp. 1360–1368, 2010.
  • D. A. Staton and A. Cavagnino, Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models, Ind. Electron., IEEE Trans., vol. 55, no. 10, pp. 3509–3516, 2008.
  • J. B. Campbell, L. M. Tolbert, C. W. Ayers, B. Ozpineci, and K. T. Lowe, Two-Phase Cooling Method Using the r134a Refrigerant to Cool Power Electronic Devices, Ind. Appl., IEEE Trans., vol. 43, no. 3, pp. 648–656, 2007.
  • Z. N. Ye, W. D. Luo, W. M. Zhang, and Z. X. Feng, Simulative Analysis of Traction Motor Cooling System based on CFD, 2011 International Conference on Electric Information and Control Engineering, 2011.
  • L. Song, Z. Li, J. Gao, Q. Zeng, and F. Wang, 3D Thermal Analysis of Water Cooling Induction Motor used for HEV, Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on. IEEE, pp. 534–537, 2008.
  • A. Kubilay, S. Zimmermann, I. Zinovik, B. Michel, and D. Poulikakos, Compact Thermal Model for the Transient Temperature Prediction of a Water-Cooled Microchip Module in Low Carbon Emission Computing, Numer. Heat Transfer, Part A: Appl., vol. 59, no. 11, pp. 815–835, 2011.
  • Y. C. Chen, B. C. Chen, C. L. Chen, and J. Q. Dong, CFD Thermal Analysis and Optimization of Motor Cooling Fin Design, ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, American Society of Mechanical Engineers, pp. 625–629, 2005.
  • C. Zhao and T. Lu, Analysis of Microchannel Heat Sinks for Electronics Cooling, Int. J. Heat Mass Transfer, vol. 45, no. 24, pp. 4857–4869, 2002.
  • C. H. Chen, Forced Convection Heat Transfer in Microchannel Heat Sinks, Int. J. Heat Mass Transfer, vol. 50, no. 11, pp. 2182–2189, 2007.
  • M. Saini and R. L. Webb, Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling, Compon. Packag. Technol., IEEE Trans., vol. 26, no. 1, pp. 71–79, 2003.
  • M. Saini and R. L. Webb, Validation of Models for Air Cooled Plane Fin Heat Sinks used in Computer Cooling, Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on. IEEE, pp. 243–250, 2002.
  • S. Nategh, O. Wallmark, M. Leksell, and S. Zhao, Thermal Analysis of a PMASRM using partial FEA and Lumped Parameter Modeling, Energy Convers., IEEE Trans., vol. 27, no. 2, pp. 477–488, 2012.
  • M. Manana, A. Arroyo, A. Ortiz, C. Renedo, S. Perez, and F. Delgado, Field Winding Fault Diagnosis in DC Motors During Manufacturing using Thermal Monitoring, Appl. Therm. Eng., vol. 31, no. 5, pp. 978–983, 2011.
  • C. Wei, Z. J. Liu, Z. Y. Li, Z. G. Qu, Y. L. He, and W. Q. Tao, Numerical Study On Some Improvements in the Passive Cooling System of a Radio Base Station Base on Multiscale Thermal Modeling Methodology-Part II-Results of Multiscale Numerical Simulation and Subsequent Improvements of Cooling Techniques, Numer. Heat Transfer, Part A: Appl., vol. 65, no. 9, pp. 863–884, 2014.
  • A. Yevtushenko and P. Grzes, The Fem-Modeling of the Frictional Heating Phenomenon in the Pad/Disc Tribosystem (A Review), Numer. Heat Transfer, Part A: Appl., vol. 58, no. 3, pp. 207–226, 2010.
  • O. Ibrahim, B. Jones, M. Hassab, and M. Op de Beeck, Three-Dimensional Transient Thermal Analysis for a Silicon PCR Microreactor, Numer. Heat Transfer, Part A: Appl., vol. 65, no. 11, pp. 1069–1088, 2014.
  • J. Gong, L. Xuan, P. Ming, and W. Zhang, An Unstructured Finite Volume Method for Transient Heat Conduction Analysis of Multilayer Functionally Graded Materials with Mixed Grids, Numer. Heat Transfer, Part B: Fundam., vol. 63, no. 3, pp. 222–247, 2013.
  • M. Polikarpova, P. Lindh, C. Gerada, M. Rilla, V. Naumanen, and J. Pyrhönen, Thermal Effects of Stator Potting in an Axial-Flux Permanent Magnet Synchronous Generator, Applied Thermal Engineering, vol. 75, pp. 421–429, 2015.
  • W. Peng, L. Jizu, B. Minli, W. Yuyan, H. Chengzhi, and Z. Liang, Numerical Simulation on the Flow and Heat Transfer Process of Nanofluids Inside a Piston Cooling Gallery”, Numer. Heat Transfer, Part A: Appl., vol. 65, no. 4, pp. 378–400, 2014.
  • K. Yamazaki and H. Ishigami, Rotor-Shape Optimization of Interior Permanent-Magnet Motors to Reduce Harmonic Iron Losses, Ind. Electron., IEEE Trans., vol. 57, no. 1, pp. 61–69, 2010.
  • X. M. Zhang, Q. F. Lu, C. Y. Cheng, J. M. Shi, Y. Y. Ye, and X. Y. Huang, Thrust Optimization and Thermal Analysis of a Water-Cooled Double-Sided Permanent Magnet Linear Synchronous Motor, Appl. Mech. Mater., vol. 416, pp. 241–246, 2013.
  • A. Boglietti, A. Cavagnino, M. Lazzari, and M. Pastorelli, A Simplified Thermal Model for Variable-Speed Self-Cooled Industrial Induction Motor, Ind. Appl., IEEE Trans., vol. 39, no. 4, pp. 945–952, 2003.
  • P. Mellor and D. Turner, Real Time Prediction of Temperatures in an Induction Motor using a Microprocessor, Electr. Mach. Power Syst., vol. 15, no. 4–5, pp. 333–352, 1988.
  • H. Liang, Z. Jiao, L. Yan, S. Wu, and Y. Li, Design and Analysis of a Tubular Linear Oscillating Motor for Directly-Driven EHA Pump, Sensors and Actuators A: Physical, vol. 210, no. 1, pp. 107–118, 2014.
  • L. Yan, L. Zhang, Z. Jiao, H. Hu, C. Chen, and I. Chen, Armature Reaction Field and Inductance of Coreless Moving-Coil Tubular Linear Machine, IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6956–6965, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.