Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 10
854
Views
219
CrossRef citations to date
0
Altmetric
Original articles

Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field

&
Pages 1186-1200 | Received 10 May 2015, Accepted 01 Jul 2015, Published online: 22 Mar 2016

References

  • T. S. Cheng, Characteristic of Mixed Convection Heat Transfer in a Lid-Driven Square Cavity with Various Richardson and Prandtl Numbers, Int. J. Therm. Sci., vol. 50, pp. 197–205, 2011.
  • M. A. Waheed, Mixed Convective Heat Transfer in Rectangular Enclosures Driven by a Continuously Moving Horizontal Plate, Int. J. Heat Mass Transf., vol. 52, pp. 5055–5063, 2009.
  • M. Muthtamilselvan, P. K. Kandaswamy, and Jinho Lee, Hydromagnetic Mixed Convection in a Two-Sided Lid-Driven Porous Enclosure, Int. J. Fluid Mech. Res., vol. 37, pp. 406–423, 2010.
  • M. Sheikholeslami Kandelousi, Effect of Spatially Variable Magnetic Field on Ferrofluid Flow and Heat Transfer Considering Constant Heat Flux Boundary Condition, Euro. Phys. J. Plus, vol. 1, pp. 129–248, 2014.
  • F. Selimefendigil and H. F. Oztop, Effect of a Rotating Cylinder in Forced Convection of Ferrofluid over a Backward Facing Step, Int. J. Heat Mass Transfer, vol. 71, pp. 142–148, 2014.
  • M. Keshavarz Moraveji and M. Hejazian, Natural Convection in a Rectangular Enclosure Containing an Oval-Shaped Heat Source and Filled with Fe3O4/water Nanofluid, Int. Commun. Heat Mass Transfer, vol. 44, pp. 135–146, 2013.
  • M. Sheikholeslami and R. Ellahi, Three Dimensional Mesoscopic Simulation of Magnetic Field Effect on Natural Convection of Nanofluid, Int. J. Heat Mass Transfer, vol. 89, pp. 799–808, 2015.
  • M. Sheikholeslami, M. Gorji-Bandpy, and K. Vajravelu, Lattice Boltzmann Simulation of Magnetohydrodynamic Natural Convection Heat Transfer of Al2O3-Water Nanofluid in a Horizontal Cylindrical Enclosure with an Inner Triangular Cylinder, Int. J. Heat Mass Transfer, vol. 80, pp. 16–25, 2015.
  • M. Sheikholeslami Kandelousi and D. D. Ganji, Chapter 1 – Control Volume Finite Element Method (CVFEM), Hydrotherm. Anal. Eng. Control Vol. Finite Elem. Method, vol. 1, pp. 1–12, 2015. doi:10.1016/B978-0-12-802950-3.00001-1
  • M. Sheikholeslami Kandelousi and D. D. Ganji, Chapter 3 – Nanofluid Flow and Heat Transfer in an Enclosure, Hydrotherm. Anal. Eng. Control Vol. Finite Elem. Method, vol. 1, pp. 31–76, 2015. doi:10.1016/B978-0-12-802950-3.00003-5
  • M. Sheikholeslami, M. G. Bandpy, R. Ellahi, and A. Zeeshan, Simulation of MHD CuO–Water Nanofluid Flow and Convective Heat Transfer Considering Lorentz Forces, J. Magn. Magn. Mater., vol. 369, pp. 69–80, 2014.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, P. Rana, and S. Soleimani, Magnetohydrodynamic Free Convection of Al2O3-Water Nanofluid Considering Thermophoresis and Brownian Motion Effects, Comput. Fluids, vol. 94, pp. 147–160, 2014.
  • M. Sheikholeslami and M. M. Rashidi, Effect of Space Dependent Magnetic Field on Free Convection of Fe3O4-Water Nanofluid, J. Taiwan Inst. Chem. Eng., 2015. doi:10.1016/j.jtice.2015.03.035
  • D. Chatterjee, MHD Mixed Convection in a Lid-Driven Cavity Including a Heated Source, Numer. Heat Transfer A, vol. 64, pp. 235–254, 2013.
  • M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, Forced Convection Heat Transfer in a Semi Annulus under the Influence of a Variable Magnetic Field, Int. J. Heat Mass Transfer, vol. 92, pp. 339–348, 2016.
  • M. Sheikholeslami and R. Ellahi, Electrohydrodynamic Nanofluid Hydrothermal Treatment in an Enclosure with Sinusoidal Upper Wall, Appl. Sci., vol. 5, pp. 294–306, 2015.
  • M. Salari, M. M. Tabar, A. M. Tabar, and H. A. Danesh, Mixed Convection of Nanofluid Flows in a Square Lid Driven Cavity Heated Partially from Both the Bottom and Side Walls, Numer. Heat Transfer A, vol. 62, pp. 158–177, 2012.
  • A. Dumon, Simulation of Heat and Mass Transport in a Square Lid Driven Cavity with Proper Generalized Decomposition (PGD), Numer. Heat Transfer B, vol. 63, pp. 18–43, 2013.
  • M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Fe3O4-Water Nanofluid, Comput. Methods Appl. Mech. Eng., vol. 294, pp. 299–312, 2015.
  • A. J. Chamkha, S. H. Hussain, and Q. R. Abd-Amer, Mixed Convection Heat Transfer Flow of Air Inside a Square Vented Cavity with a Heated Horizontal Square Cylinder, Numer. Heat Transfer A, vol. 59, pp. 58–79, 2011.
  • A. J. Chamkha, Double-Diffusive Convection in a Porous Enclosure with Cooperating Temperature and Concentration Gradients and Heat Generation or Absorption Effects, Numer. Heat Transfer A, vol. 41, pp. 65–87, 2002.
  • A. J. Chamkha, Non-Darcy Fully Developed Mixed Convection in a Porous Medium Channel with Heat Generation/Absorption and Hydromagnetic Effects, Numer. Heat Transfer A, vol. 32, pp. 653–675, 1997.
  • A. J. Chamkha, Coupled Heat and Mass Transfer by Natural Convection about a Truncated Cone in the Presence of Magnetic Field and Radiation Effects, Numer. Heat Transfer, A, vol. 39, pp. 511–530, 2001.
  • M. Sheikholeslami, and M. M. Rashidi, Ferrofluid Heat Transfer Treatment in the Presence of Variable Magnetic Field, Eur. Phys. J. Plus, vol. 1, pp. 130: 115, 2015.
  • M. Sheikholeslami and S. Abelman, Two Phase Simulation of Nanofluid Flow and Heat Transfer in an Annulus in the Presence of an Axial Magnetic Field, IEEE Trans. Nanotechnol., vol. 14, no. 3, pp. 561–569, 2015.
  • S. Sivasankaran and K. L. Pan, Numerical Simulation on Mixed Convection in a Porous Lid Driven Cavity with Nonuniform Heating on Both Side Walls, Numer. Heat Transfer A, vol. 61, pp. 101–121, 2012.
  • R. Nasrin, Influences of Physical Parameters on Mixed Convection in a Horizontal Lid Driven Cavity with an Undulating Base Surface, Numer. Heat Transfer A, vol. 61, pp. 306–321, 2012.
  • M. A. Ismael and A. J. Chamkha, Mixed Convection in Lid Driven Trapezoidal Cavities with an Aiding or Opposing Side Wall, Numer. Heat Transfer A, vol. 68, pp. 312–335, 2014.
  • E. Abu-Nada and H. F. Oztop, Numerical Analysis of Al2O3-Water Nanofluids Natural Convection in a Wavy Walled Cavity, Numer. Heat Transfer A, vol. 59, pp. 403–419, 2011.
  • M. Sheikholeslami Kandelousi, KKL Correlation for Simulation of Nanofluid Flow and Heat Transfer in a Permeable Channel, Phys. Lett. A, vol. 378, pp. 3331–3339, 2014.
  • H. F. Oztop, E. Abu-Nada, Y. Varol, and A. J. Chamkha, Natural Convection in Wavy Enclosures with Volumetric Heat Sources, Int. J. Therm. Sci., vol. 50, pp. 502–514, 2011.
  • M. Sheikholeslami, Effect of Uniform Suction on Nanofluid Flow and Heat Transfer over a Cylinder, J. Braz. Soc. Mech. Sci. Eng., 2014. doi:10.1007/s40430-014-0242-z
  • M. Sheikholeslami and D. D. Ganji, Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer, Energy, vol. 75, pp. 400–410, 2014.
  • M. M. Rahman, H. F. Oztop, N. A. Rahim, R. Saidur, and K. Al-Salem, MHD Mixed Convection with Joule Heating Effect in a Lid-Driven Cavity with a Heated Semi-Circular Source Using the Finite Element Technique, Numer. Heat Transfer A, vol. 60, pp. 543–560, 2011.
  • M. Sheikholeslami, M. Gorji-Bandpay, and D. D. Ganji, Magnetic Field Effects on Natural Convection Around a Horizontal Circular Cylinder Inside a Square Enclosure Filled with Nanofluid, Int. Commun. Heat Mass Transfer, vol. 39, pp. 978–986, 2012.
  • A. J. Chamkha and H. Al-Naser, Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Uniform Side Heat and Mass Fluxes and Opposing Temperature and Concentration Gradients, Int. J. Therm. Sci., vol. 41, pp. 936–948, 2002.
  • A. Ben-Nakhi and A. J. Chamkha, Natural Convection in Inclined Partitioned Enclosures, Heat Mass Transfer, vol. 42, pp. 311–321, 2006.
  • R. Nasrin, A. J. Chamkha, and M. A. Alim, Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber with Internal Heat Generation, Int. J. Numer. Methods Heat Fluid Flow, vol. 24, pp. 36–57, 2014.
  • S. Ray and D. Chatterjee, MHD Mixed Convection in a Lid-Driven Cavity Including Heat Conducting Solid Object and Corner Heaters With Joule Heating, Numer. Heat Transfer A, vol. 66, pp. 530–550, 2014.
  • M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, Ferrofluid Flow and Heat Transfer in a Semi Annulus Enclosure in the Presence of Magnetic Source Considering Thermal Radiation, J. Taiwan Inst. Chem. Eng., vol. 47, pp. 6–17, 2015.
  • V. Loukopoulos and E. Tzirtzilakis, Biomagnetic Channel Flow in Spatially Varying Magnetic Field, Int. J. Eng. Sci., vol. 42, pp. 571–590, 2004.
  • H. Aminfar, M. Mohammadpourfard, and F. Mohseni, Two-Phase Mixture Model Simulation of the Hydro-Thermal Behavior of an Electrical Conductive Ferrofluid in the Presence of Magnetic Fields, J. Magn. Magn. Mater., vol. 324, pp. 830–842, 2012.
  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transfer, vol. 446, pp. 3639–3653, 2003.
  • G. De Vahl Davis, Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Numer. Methods Fluids, vol. 3, pp. 249–264, 1962.
  • N. Rudraiah, R. M. Barron, M. Venkatachalappa, and C. K. Subbaraya, Effect of a Magnetic Field on Free Convection in a Rectangular Enclosure, Int. J. Eng. Sci., vol. 33, pp. 1075–1084, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.