Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 10
270
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of combined mode heat transfer in a porous medium using the lattice Boltzmann method

, &
Pages 1092-1105 | Received 17 Jul 2015, Accepted 31 Oct 2015, Published online: 22 Mar 2016

References

  • P. Cheng and W. J. Minkowycz, Free Convection about a Vertical Flat Plate Embedded in a Porous Medium with Application to Heat Transfer from a Dike, J. Geophys. Res., vol. 82, pp. 2040–2044, 1977.
  • Bejan and K. R. Khair, Heat and Mass Transfer by Natural Convection in a Porous Medium, Int. J. Heat Mass Transfer, vol. 28, pp. 909–918, 1985.
  • H. Allain, B. Baudouy, M. Quintard, and M. Prat, Experimental Investigation of Heat Transfer Through Porous Media in Superfluid Helium, Cryogenics, vol. 66, pp. 53–62, 2015.
  • T. Tomimura, K. Hamano, Y. Honda, and R. Echigo, Experimental Study on Multi-Layered Type of Gas-to-Gas Heat Exchanger Using Porous Media, Int. J. Heat Mass Transfer, vol. 47, pp. 4615–4623, 2004.
  • K. Boomsma, D. Poulikakos, and F. Zwick, Metal Foams as Compact High Performance Heat Exchangers, Mech. Mater., vol. 35, pp. 1161–1176, 2003.
  • N. Delalic, D. Mulahasanovic, and E. N. Ganic, Porous Media Compact Heat Exchanger Unit – Experiment and Analysis, Exp. Therm. Fluid Sci., vol. 28, pp. 185–192, 2004.
  • L. Zhou, M.-Z. Xie, and K. H. Luo, Numerical Study of Heat Transfer and Combustion in IC Engine with a Porous Media Piston Region, Appl. Therm. Eng., vol. 65, no. 1–2, pp. 597–604, 2014.
  • B. Yan, J. Wieberdink, F. Shirazi, P. Y. Li, T. W. Simon, and J. D. Van de Ven, Experimental Study of Heat Transfer Enhancement in a Liquid Piston Compressor/Expander Using Porous Media Inserts, Appl. Energy, vol. 154, no. 15, pp. 40–50, 2015.
  • C. L. Ford, J. F. Carrotte, and A. D. Walker, The Application of Porous Media to Simulate the Upstream Effects of Gas Turbine Injector Swirl Vanes, Comput. Fluids, vol. 77, pp. 143–151, 2013.
  • P. Klein, T. H. Roos, and T. J. Sheer, Parametric Analysis of a High Temperature Packed Bed Thermal Storage Design for a Solar Gas Turbine, Sol. Energy, vol. 118, pp. 59–73, 2015.
  • T. W. Tong and S. B. Sathe, Heat Transfer Characteristics of Porous Radiant Burners, J. Heat Transfer, vol. 113, pp. 423–428, 1991.
  • M. R. Kulkarni and R. E. Peck, Analysis of a Bilayered Porous Radiant Burner, Numer. Heat Transfer A, vol. 30, pp. 219–232, 1996.
  • P. Talukdar, S. C. Mishra, D. Trimis, and F. Durst, Heat Transfer Characteristics of a Porous Radiant Burner under the Influence of a 2-D Radiation Field, J. Quant. Spectrosc. Radiat. Transfer, vol. 84, pp. 527–537, 2004.
  • S. C. Mishra, M. Stevan, S. Nemoda, P. Talukdar, D. Trimis, and F. Durst, Heat Transfer Analysis of a Two-Dimensional Rectangular Porous Burner, Int. Commun. Heat Mass Transfer, vol. 33, pp. 467–474, 2006.
  • M. C. Melaaen, Numerical Analysis of Heat and Mass Transfer in Drying and Pyrolysis of Porous Media, Numer. Heat Transfer A, vol. 29, no. 4, pp. 331–355, 1996.
  • V. Bubnovich, L. Henríquez, and N. Gnesdilov, Numerical Study of the Effect of the Diameter of Alumina Balls on Flame Stabilization in a Porous-Medium Burner, Numer. Heat Transfer A, vol. 52, no. 3, pp. 275–295, 2007.
  • P. Horsman and K. J. Daun, Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling, Numer. Heat Transfer A, vol. 60, no. 9, pp. 727–745, 2011.
  • Loukou, I. Frenzel, J. Klein, and D. Trimis, Experimental Study of Hydrogen Production and Soot Particulate Matter Emissions from Methane Rich-Combustion in Inert Porous Media, Int. J. Hydrogen Energy, vol. 37, pp. 16686–16696, 2010.
  • P. Gentillon and M. Toledo, Hydrogen and Syngas Production from Propane and Polyethylene, Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9223–9228, 2013.
  • J. C. Hsieh, T. S. Chen, and B. F. Armaly, Mixed Convection along a Nonisothermal Vertical Flat Plate Embedded in a Porous Medium: The Entire Regime, Int. J. Heat Mass Transfer, vol. 36, no. 7, pp. 1819–1825, 1993.
  • Holstad, Temperature-Driven Fluid Flow in Porous Media Using a Mixed Finite Element Method and a Finite Volume Method, Adv. Water Resour., vol. 24, no. 8, pp. 843–862, 2001.
  • N. Zhang, Z. Huang, and J. Yao, Locally Conservative Galerkin and Finite Volume Methods for Two-Phase Flow in Porous Media, J. Comput. Phys., vol. 254, pp. 39–51, 2013.
  • T. Groşan, C. Revnic, I. Pop, and D. B. Ingham, Free Convection Heat Transfer in a Square Cavity Filled with a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transfer, vol. 87, pp. 36–41, 2015.
  • S. Succi, The Lattice Boltzmann Method for Fluid Dynamics and Beyond, Oxford University Press, New York, NY, 2001.
  • M. Yoshino, Y. Matsuda, and C. Shao, Comparison of Accuracy and Efficiency between the Lattice Boltzmann Method and the Finite Difference Method in Viscous/Thermal Fluid Flows, Int. J. Comput. Fluid Dyn., vol. 18, pp. 333–345, 2004.
  • P. Asinari, S. C. Mishra, and R. Borchiellini, Lattice Boltzmann Formulation for the Analysis of Radiative Heat Transfer Problems in a Participating Medium, Numer. Heat Transfer B, vol. 57, no. 2, pp. 126–146, 2010.
  • J. G. M. Eggels and J. A. Sommers, Numerical Simulation of Free Convective Flow Using the Lattice Boltzmann Scheme, Int. J. Heat Fluid Flow, vol. 16, pp. 357–364, 1995.
  • X. Shan, Simulation of Rayleigh-Benard Convection Using a Lattice Boltzmann Method, Phys. Rev. E, vol. 55, pp. 2780–2788, 1997.
  • W. S. Jiaung, J. R. Ho, and C. P. Kuo, Lattice Boltzmann Scheme for Hyperbolic Heat Conduction Equation, Numer. Heat Transfer B, vol. 39, pp. 167–187, 2001.
  • Z. Li, M. Yang, and Y. Zhang, Numerical Simulation of Melting Problems Using the Lattice Boltzmann Method with the Interfacial Tracking Method, Numer. Heat Transfer A, vol. 68, pp. 1175–1197, 2015.
  • S. Biswas, P. Sharma, B. Mondal, and G. Biswas, Analysis of Mixed Convective Heat Transfer in a Ribbed Channel Using the Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 68, pp. 75–98, 2015.
  • S. Sharafatmandjoora, N. A. C. Sidik, and F. Sabetghadam, Analysis of the Applicability of the Lattice Boltzmann Method in Targeting a Chaotic Flame Front Model, Numer. Heat Transfer A, vol. 67, pp. 597–603, 2015.
  • W. N. Zhou and Y. Y. Yan, Numerical Investigation of the Effects of a Magnetic Field on Nanofluid Flow and Heat Transfer by the Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 68, pp. 1–16, 2015.
  • W. Z. Li, B. Dong, Y. J. Feng, and T. Sun, Numerical Simulation of a Single Bubble Sliding over a Curved Surface and Rising Process by the Lattice Boltzmann Method, Numer. Heat Transfer B, vol. 65, pp. 174–193, 2014.
  • T. Zhang and D. Che, Lattice Boltzmann Simulation of Natural Convection in an Inclined Square Cavity with Spatial Temperature Variation, Numer. Heat Transfer A, vol. 66, pp. 712–732, 2014.
  • Z. Li, M. Yang, and Y. Zhang, A Hybrid Lattice Boltzmann and Finite-Volume Method for Melting with Convection, Numer. Heat Transfer B, vol. 66, pp. 307–325, 2014.
  • S. C. Mishra and A. Lankadasu, Analysis of Transient Conduction and Radiation Heat Transfer Using the Lattice Boltzmann Method and the Discrete Transfer Method, Numer. Heat Transfer A, vol. 47, no. 9, pp. 935–954, 2005.
  • S. C. Mishra, A. Lankadasu, and K. Beronov, Application of the Lattice Boltzmann Method for Solving the Energy Equation of a 2-D Transient Conduction-Radiation Problem, Int. J. Heat Mass Transfer, vol. 48, pp. 3648–3659, 2005.
  • S. C. Mishra, C. H. Krishna, and M. Y. Kim, Lattice Boltzmann Method and Modified Discrete Ordinate Method Applied to Radiative Transport in a Spherical Medium with and without Conduction, Numer. Heat Transfer A, vol. 58, pp. 852–881, 2010.
  • S. C. Mishra and R. R. Vernekar, Analysis of Transport of Collimated Radiation in a Participating Media Using the Lattice Boltzmann Method, J. Quant. Spectrosc. Radiat. Transfer, vol. 113, pp. 2088–2099, 2012.
  • R. R. Vernekar and S. C. Mishra, Analysis of Transport of Short-Pulse Radiation in a Participating Medium Using Lattice Boltzmann Method, Int. J. Heat Mass Transfer, vol. 77, pp. 218–229, 2014.
  • S. C. Mishra, H. Poonia, R. R. Vernekar, and A. K. Das, Lattice Boltzmann Method Applied to the Analysis of Radiative Transport Problems with and without Conduction in a 1-D Planar Medium, Heat Transfer Eng., vol. 35, pp. 1267–1278, 2014.
  • S. C. Mishra, H. Poonia, A. K. Das, P. Asinari, and R. Borchiellini, Analysis of Conduction-Radiation Heat Transfer in 2-D Enclosure Using the Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 66, pp. 669–688, 2014.
  • J. Y. Murthy and S. R. Mathur, Radiative Heat Transfer in Axisymmetric Geometries Using an Unstructured Finite-Volume Method, Numer. Heat Transfer B, vol. 33, pp. 397–416, 1998.
  • J. C. Chai and S. V. Patankar, Finite Volume Method for Radiation Heat Transfer, Adv. Numer. Heat Transfer, vol. 2, pp. 110–135, 2000.
  • N. Anand and S. C. Mishra, The Discrete Transfer Method Applied to the Radiative Heat Transfer in a Variable Refractive Index Semitransparent Medium, J. Quant. Spectrosc. Radiat. Transfer, vol. 102, pp. 432–440, 2006.
  • R. Raj, A. Prasad, P. R. Parida, and S. C. Mishra, Analysis of Solidification of a Semitransparent Planar Layer Using the Lattice Boltzmann Method and The Discrete Transfer Method, Numer. Heat Transfer A, vol. 49, no. 3, pp. 279–299, 2006.
  • S. C. Mishra, C. H. Krishna, and M. Y. Kim, Analysis of Conduction and Radiation Heat Transfer in a 2-D Cylindrical Medium Using the Modified Discrete Ordinate Method and the Lattice Boltzmann Method, Numer. Heat Transfer A, vol. 60, pp. 254–287, 2011.
  • R. Singh, and S. C. Mishra, Analysis of Radiative Heat Transfer in a Planar Participating Medium Subjected to Diffuse and/or Collimated Radiation – A Comparison of the DTM, the DOM and the FVM, Numer. Heat Transfer A, vol. 52, pp. 481–496, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.