Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 7
176
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Thermal instability-driven multiple solutions in a grooved channel

, , , , &
Pages 776-790 | Received 19 Dec 2015, Accepted 01 Apr 2016, Published online: 20 Sep 2016

References

  • M. Hasnaoui, E. Bilgen, and P. Vasseur, Natural Convection Heat Transfer in Rectangular Cavities Partially Heated From Below, J. Thermophys. Heat Transfer, vol. 6(2), pp. 255–264, 1992.
  • E. Papanicolaou and Y. Jaluria, Transition to a Periodic Regime in Mixed Convection in a Square Cavity, J. Fluid Mech., vol. 239, pp. 489–509, 1992.
  • J. P. Gollub and S. H. Besson, Many Roads to Turbulence Convenction, J. Fluid Mech., vol. 100, pp. 449–470, 1980.
  • G. N. Ivey, Experiments on Transient Natural Convenction in a Cavity, J. Fluid Mech., vol. 144, pp. 389–401, 1984.
  • D. Poulikakos, Natural Convection in a Confined Fluid Filled Space Driven by a Single Vertical Wall with Warm and Cold Region, J. Heat Transfer, vol. 107, pp. 867–876, 1985.
  • A. Ndame, Etude Experimentale de la Convection Naturelle en cavité, de l'etat Stationnaire Vers le Chaos, The University of Poitiers, France, Poitiers, 1992.
  • P. Lequere and S. Xin, Direct Numerical Simulation of Two Dimensional Chaotic Natural Convection in a Differentially Heated Cavity of Aspect Ratio 4, J. Fluid Mech., vol. 304, pp. 87–118, 1995.
  • Gelfgat, A. Y., and P. Z. Bar-Yoseph, The Effect of an External Magnetic Field on Oscillatory Instability of Convective Flows in a Rectangular Cavity, Phy. Fluids, vol. 13(8), pp. 2269–2278, 2001.
  • I. Mercader, O. Batiste, and L. Ramírez-Piscina, Bifurcations and Chaos in Single-Roll Natural Convection with Low Prandtl Number, Phys. Fluids, vol. 17(104108), pp. 1–13, 2005.
  • N. A. Pelekasis, Linear Stability Analysis and Dynamic Simulations of Free Convection in a Differentially Heated Cavity in the Presence of a Horizontal Magnetic Field and a Uniform Heat Source, Phys. Fluids, vol. 18(034101), pp. 1–23, 2006.
  • V. Erenburg, A. Yu. Gelfgat, E. Kit, P. Z. Bar-Yoseph, and A. Solan, Multiple States, Stability and Bifurcations of Natural Convection in a Rectangular Cavity with Partially Heated Vertical Walls, J. Fluid Mech., vol. 492, pp. 63–89, 2003.
  • T. W. H. Sheu, H. P. Rani, T.-C. Tan, and S. F. Tsai, Multiple States, Topology and Bifurcations of Natural Convection in a Cubical Cavity, Comp. Fluids, vol. 37, pp. 1011–1028, 2008.
  • J. Tang and H. H. Bau, Numerical Investigation of the Stabilization of the No-Motion State of a Fluid Layer Heated from below and Cooled from Above, Phys. Fluids, vol. 10(7), pp. 1597–1610, 1998.
  • S. Douamna, M. Hasnaoui, and B. Abourida, Two-Dimensional Transient Natural Convection in a Repetitive Geometry Submitted to Variable Heating from below: Numerical Identification of Routes Leading to Chaos, Numer. Heat Transfer A, vol. 37, pp. 779–799, 2000.
  • M. A. Randriazanamparany, A. Skouta, and M. Daguenet, Numerical Study of the Transition Toward Chaos of Two-dimensional Natural Convection within a Square Cavity, Numer. Heat Transfer A, vol. 48, pp. 127–147, 2005.
  • N. K. Ghaddar, K. Z. Korczak, B. B. Mikic, and A. T. Patera, Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-sustained Oscillations, J. Fluid Mech., vol. 163, pp. 99–127, 1986.
  • T. Adachi and H. Uehara, Transitions and Pressure Drop Characteristics of Flow in Channels with Periodically Grooved Parts, JSME Int. J. Ser. B, vol. 44, pp. 221–230, 2001.
  • T. Adachi and H. Uehara, Linear Stability Analysis of Flow in a Periodically Grooved Channel, Int. J. Num. Meth. Fluids, vol. 41, pp. 601–613, 2003.
  • T. Nishimura and K. Kunitsugu, Three-dimensionality of Grooved Channel Flows at Intermediate Reynolds Numbers, Exp. Fluids, vol. 31, pp. 34–44, 2001.
  • A. M. Guzman and M. D. Valle, Heat Transfer Enhancement in Grooved Channels Due to Flow Bifurcations, Heat Mass Transfer, vol. 42, pp. 967–975, 2006.
  • X. Wan and G. E. Karniadakis, Stochastic Heat Transfer Enhancement in a Grooved Channel, J. Fluid Mech., vol. 565, pp. 255–278, 2006.
  • S. Aklouche-Benouaguef, B. Zeghmati, and K. Bouhadef, Numerical Simulation of Chaotic Natural Convection in a Differentiated Closed Square Cavity, Numer. Heat Transfer A, vol. 65, pp. 229–246, 2014.
  • M. Z. Hossain and J. M. Floryan, Natural Convection in a Horizontal Fluid Layer Periodically Heated from above and below, Phys. Review E, vol. 92(023015), pp. 1–9, 2015.
  • A. K. Sharma, P. S. Mahapatra, N. K. Manna, and K. Ghosh, Mixed Convenction Heat Transfer in a Grooved Channel in the Presence of a Baffle, Numer. Heat Transfer A, vol. 67, pp. 1097–1118, 2015.
  • N. Biswas, P. S. Mahapatra, and N. K. Manna, Mixed Convenction Heat Transfer in a Grooved Channel with Injection, Numer. Heat Transfer A, vol. 68, pp. 663–685, 2015.
  • A. Bejan, Convection Heat Transfer. Wiley, New York, 1984.
  • P. S. Mahapatra, N. K. Manna, and K. Ghosh, Effect of Active Wall Location in a Partially Heated Enclosure, Int. Comm. Heat Mass Transfer, vol. 61, pp. 69–77, 2015.
  • O. Polat and E. Bilgen, Laminar Natural Convection in Inclined Open Shallow Cavities, Int. J. Therm. Sci., vol. 41, pp. 360–368, 2002.
  • E. Bilgen and H. Oztop, Natural Convection Heat Transfer in Partially Open Inclined Square Cavities, Int. J. Heat Mass Transfer, vol. 48, pp. 1470–1479, 2005.
  • A. Müftüŏglu and E. Bilgen, Natural Convection in an Open Square Cavity with Discrete Heaters at their Optimized Positions, Int. J. Therm. Sci., vol. 47, pp. 369–377, 2008.
  • J. L. Lage, J. S. Lim, and A. Bejan, Natural Convection with Radiation in a Cavity with Open top end., J. Heat Transfer, vol. 114, pp. 479–486, 1992.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, 1980.
  • P. S. Mahapatra, S. De, K. Ghosh, and N. K. Manna, Heat Transfer Enhancement and Entropy Generation in a Square Enclosure in the Presence of Adiabatic and Isothermal Blocks, Numer. Heat Transfer A, vol. 64, pp. 576–597, 2013.
  • G. de Vahl Davis, Natural Convection of Air in a Square Cavity: A Bench-Mark Numerical Solution, Int J. Num. Meth Fluids, vol. 3, pp. 249–264, 1983.
  • D. C. Wan, B. S. V. Patnaik, and G. W. Wei, A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution, Numer. Heat Transfer B, vol. 40, pp. 199–228, 2001.
  • T. Pesso and S. Piva, Laminar Natural Convection in a Square Cavity: Low Prandtl Numbers and Large Density Differences, Int. J. Heat Mass Transfer, vol. 52, pp. 1036–1043, 2009.
  • Y. L. Chan and C. L. Tien, A Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities, Numer. Heat Transfer A, vol. 8, pp. 65–80, 1985.
  • E. Bilgen and H. Oztop, Natural Convection Heat Transfer in Partially Open Inclined Square Cavities, Int. J. Heat Mass Transfer, vol. 48, pp. 1470–1479, 2005.
  • A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov Exponents from a Time Series, Physica D, vol. 16, pp. 285–317, 1985.
  • P. Gaspard, Lyapunov Exponent of Ion Motion in Microplasmas, Phys. Rev. E, vol. 68, pp. 1–10, 2003.
  • J. Bec, L. Biferale, G. Boffetta, M. Cencini, S. Musacchio, and F. Toschi, Lyapunov Exponents of Heavy Particles in Turbulence, Phys. Fluids, vol. 18(091702), pp. 1–4, 2006.
  • A. Parashar, R. Singh, P. K. Panigrahi, and K. Muralidhar, Chaotic Flow in an Aortic Aneurysm, J. App. Phys., vol. 113(214909), pp. 1–14, 2013.
  • M. Bouafia and O. Daube, Natural Convection for Large Temperature Gradients Around a Square Solid Body within a Rectangular Cavity, Int. J. Heat Mass Transfer, vol. 50, pp. 3599–3615, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.