Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 6
185
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Combined parameter and state estimation in the radio frequency hyperthermia treatment of cancer

, &
Pages 581-594 | Received 27 Jan 2016, Accepted 20 Apr 2016, Published online: 18 Aug 2016

References

  • P. Maybeck, Stochastic Models, Estimation and Control, NY, USA, 1979.
  • J. P. Kaipio and E. Somersalo, Computational and Statistical Methods for Inverse Problems, Springer, Berlin, Heidelberg, 2004.
  • J. M. Hammersley and D. C. Hanscomb, Monte Carlo Methods, Chapman & Hall, London, 1964.
  • R. Winkler, An Introduction to Bayesian Inference and Decision, Probabilistic Publishing, Gainsville, Florida, 2003.
  • N. Gordon, D. Salmond, and A. F. M. Smith, Novel Approach to Nonlinear and Non-Gaussian Bayesian state estimation, Proc. Inst. Elect. Eng., vol. 140, pp. 107–113, 1993.
  • M. K. Pitt and N. Shephard, Filtering via Simulation: Auxiliary Particle Filters, J. Am. Stat. Assoc., vol. 94, pp. 1–41, 1993.
  • J. Liu and M. West Combined Parameter and State Estimation In Simulation Based Filtering, in: S. A. Doucet, N. de Freitas, and N. Gordon (eds.), Seq. Monte Carlo Methods Pract., New York, 2001, pp. 197–217.
  • M. West, Approximating Posterior Distributions by Mixture, J. R. Stat. Soc. B. vol. 55, pp. 409–422, 1993.
  • M. M. Saito, S. Imoto, R. Yamaguchi, H. Sato, H. Nakada, M. Kami, et al., Extension and Verification of the SEIR Model on the 2009 Influenza A (H1N1) Pandemic in Japan, Math. Biosci., vol. 246, pp. 47–54, 2013.
  • A. Skvortsov and B. Ristic, Monitoring and Prediction of an Epidemic Outbreak Using Syndromic Observations, Math. Biosci., vol. 240, pp. 12–19, 2012.
  • L.-J. Kao, An Application of a Two-level Non-Gaussian State-space Model in the Analysis of Longitudinal Papilloma Count Data, Math. Biosci., vol. 199, pp. 121–140, 2006.
  • J. M. J. Costa, H. R. B. Orlande, H. F. Campos Velho, S. T. R. Pinho, G. S. Dulikravich, R. M. Cotta, and S. Cunha, Estimation of Tumor Size Evolution Using Particle Filters, J. Comput. Biol., vol. 22, pp. 1–17, 2015.
  • D. M. Sheinson, J. Niemi, and W. Meiring, Comparison of the Performance of Particle Filter Algorithms Applied to Tracking of a Disease Epidemic, Math. Biosci., vol. 255C, pp. 21–32, 2014.
  • W. Y. Tan and Z. Ye, Estimation of HIV Infection and Incubation via State Space Models, Math. Biosci., vol. 167, pp. 31–50, 2000.
  • L. A. Bermeo Varon, H. R. B. Orlande, and G. Elicabe, Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves, Int. J. Therm. Sci., vol. 98, pp. 228–236, 2015.
  • B. Lamien, H. R. B. Orlande, G. E. Elicabe, and A. J. Maurente, State Estimation Problem in Hyperthermia Treatment of Tumors Loaded with Nanoparticles, in: Proc. 15th Int. Heat Transf. Conf. IHTC-15, Kyoto, Japan, 2014.
  • P. Cherukuri, E. S. Glazer, and S. A. Curley, Targeted hyperthermia using metal nanoparticles, Adv. Drug Deliv. Rev., vol. 62, pp. 339–45, 2010.
  • E. Majchrzak and M. Paruch, Numerical Modelling of Temperature Field in the Tissue with a Tumor Subject to the Action of Two External Electrode, Sci. Res. Inst. Math. Comput. Sci., vol. 1, pp. 1–8, 2009.
  • E. Majchrzak and M. Paruch, Numerical Modelling of Tissue Heating by Means of the Electromagnetic Field, Sci. Res. Inst. Math. Comput. Sci., vol. 9, pp. 89–97, 2010.
  • E. Kurgan and P. Gas, Estimation of Temperature Distribution Inside Tissues in External RF Hyperthermia, Prz. Elektrotechniczny., vol. 86, pp. 100–102, 2010.
  • E. Kurgan and P. Gas, Treatment of Tumors Located in the Human Thigh using RF Hyperthermia, Prz. Elektrotechniczny., vol. 87, pp. 103–106, 2011.
  • M. Jamil and E. Y. K. Ng, To Optimize the Efficacy of Bioheat Transfer in Capacitive Hyperthermia: A Physical Perspective, J. Therm. Biol., vol. 38, pp. 272–279, 2013.
  • E. Y. K. Ng and M. Jamil, Parametric Sensitivity Analysis of Radiofrequency Ablation with Efficient Experimental Design, Int. J. Therm. Sci., vol. 80, pp. 41–47, 2014.
  • M. Jamil and E. Y. K. Ng, Statistical Modeling of Electrode based Thermal Therapy with Taguchi based Multiple Regression, Int. J. Therm. Sci., vol. 71, pp. 283–291, 2013.
  • L. A. Dombrovsky, J. Randrianalisoa, W. Lipinski, and V. Timchenko, Simplified Approaches To Radiative Transfer Simulations in Laser-Induced Hyperthermia of Superficial Tumors, Comput. Therm. Sci., vol. 5, pp. 521–530, 2013.
  • L. A. Dombrovsky, V. Timchenko, and M. Jackson, Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model, Int. J. Heat Mass Transf., vol. 55, pp. 4688–4700, 2012.
  • L. A. Dombrovsky, V. Timchenko, C. Pathak, H. Piazena, W. Müller, and M. Jackson, Radiative Heating of Superficial Human Tissues with the Use of Water-Filtered Infrared-A Radiation: A Computational Modeling, Int. J. Heat Mass Transf., vol. 85, pp. 311–320, 2015.
  • M. R. Horsman and J. Overgaard, Hyperthermia: a potent enhancer of radiotherapy, Clin. Oncol. (R. Coll. Radiol), vol. 19, pp. 418–26, 2007.
  • R. Colombo, L. F. Da Pozzo, A. Salonia, P. Rigatti, Z. Leib, J. Baniel, et al., Multicentric Study Comparing Intravesical Chemotherapy Alone and With Local Microwave Hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma, J. Clin. Oncol., vol. 21, pp. 4270–4276, 2003.
  • E. Majchrzak and M. Paruch, Numerical Modelling of the Cancer Destruction During Hyperthermia Treatment, Comput. Methods Mech., pp. 1–6, 2011.
  • Y.-G. Lv, Z.-S. Deng, and J. Liu, 3-D Numerical Study on the Induced Heating Effects of Embedded Micro/Nanoparticles on Human Body Subject to External Medical Electromagnetic Field, IEEE Trans. Nanobioscience., vol. 4, pp. 284–294, 2005.
  • A. Miaskowski and B. Sawicki, Magnetic Fluid Hyperthermia Modeling Based on Phantom Measurements, and Realistic Breast Model, IEEE Trans. Biomed. Eng., vol. 60, pp. 1806–1813, 2013.
  • E. Majchrzak and M. Paruch, Identification of Electromagnetic Field Parameters Assuring the Cancer Destruction During Hyperthermia Treatment, Inverse Probl. Sci. Eng., vol. 19, pp. 45–58, 2011.
  • E. Kurgan and P. Gas, Simulation of the Electromagnetic Field And Temperature Distribution in Human Tissue in RF Hyperthermia, Prz. Elektrotechniczny., vol. 1, pp. 171–174, 2015.
  • M. Paruch, Hyperthermia Process Control Induced by the Electric Field in Order to Cancer Destroying, Acta Bioeng. Biomech., vol. 16, pp. 123–130, 2014.
  • W. Andra, C. G. Ambly, R. Hergt, I. Hilger, and W. A. Kaiser, Temperature Distribution as Function of Time Around a Small Spherical Heat Source of Local Magnetic Hyperthermia, J. Magn. Magn. Mater., vol. 194, pp. 197–203, 1999.
  • T. O. Tasci, I. Vargel, A. Arat, E. Guzel, P. Korkusuz, and E. Atalar, Focused RF Hyperthermia Using Magnetic Fluids, Med Phys., vol. 36, pp. 1906–1912, 2009.
  • M. T. Basel, S. Balivada, H. Wang, T. B. Shrestha, G. M. Seo, M. Pyle, et al., Cell-delivered Magnetic Nanoparticles Caused Hyperthermia-Mediated Increased Survival in a Murine Pancreatic Cancer Model, Int. J. Nanomedicine., vol. 7, pp. 297–306, 2012.
  • R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy, J. Phys. Condens. Matter., vol. 18, pp. S2919–S2934, 2006.
  • K. Murase, J. Oonoki, H. Takata, R. Song, A. Angraini, P. Ausanai, et al., Simulation and Experimental Studies on Magnetic Hyperthermia with use of Superparamagnetic Iron Oxide Nanoparticles, Radiol. Phys. Technol., vol. 4, pp. 194–202, 2011.
  • L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, A Combined Transient Thermal Model for Laser Hyperthermia of Tumors with Embedded Gold Nanoshells, Int. J. Heat Mass Transf., vol. 54, pp. 5459–5469, 2011.
  • S. Eibner, R. Alfredo, O. Jaime, B. Lamien, R. Basto, H. Orlande, and O. Fudym, Near Infrared Light Heating of Soft Tissue Phantoms Containing Nanoparticles, Thermal Engineering., vol. 13, pp. 13–18, 2014.
  • L. A. Dombrovsky, V. Timchenko, and M. Jackson, Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model, Int. J. Heat Mass Transf., vol. 55, pp. 4688–4700, 2012.
  • Y. Bayazitoglu, Nanoshell Assisted Cancer Thermal Therapy: Numerical Simulations, in: Proc. ASME 2009 2nd Int. Conf. Micro/Nanoscale Heat Mass Transf. Int. Conf., Shanghai, China, pp. 545–552, 2009.
  • X. Xu, A. Meade, and Y. Bayazitoglu, Numerical Investigation of Nanoparticle-assisted Laser-induced Interstitial Thermotherapy Toward Tumor and Cancer Treatments, Lasers Med Sci., vol. 26, pp. 213–222, 2011.
  • X. Xu, A. Meade, and Y. Bayazitoglu, Feasibility of Selective Nanoparticle-assisted Photothermal Treatment for an Embedded Liver Tumor, Lasers Med Sci., pp. 1–10, 2012.
  • Y. Zhang, B. Chen, D. Li, and G. Wang, Efficient and Accurate Simulation of Light Propagation in Bio-tissues Using the Three-dimensional Geometric Monte Carlo method, Num. Heat Transfer - Part A, vol. 68, pp. 827–846, 2015.
  • I. Im, S. Yun, and K. Kim, Numerical Study on the Temperature Profiles and Degree of Burns in Huma Skin Tissue Combined Thermal Therapy, Num Heat Transfer - Part A, vol. 67, pp. 921–933, 2015.
  • A. AlAmiri, K. Khanafer, and K. Vafai, Flui-structure Interactions in Tissue During Hyperthermia, Num Heat Transfer - Part A, vol. 66, pp. 1–16, 2014.
  • T. Wu, P. Li, Q. shao, J. Hong, L. Yang, and S. Wu, A Simulation-Experiment Method to Chracterize the Heat Transfer in Ex-vivo Porcine Hepatic Tissue with Realistic Microwave Ablation System, Num Heat Transfer - Part A, vol. 64, pp. 729–743, 2013.
  • N. Afrin, J. Zhou, D. Tzou, and J. chen, Numerical Simulation of Thermal Damage of Living Biological Tissues Induced by Laser Irradiation Based on the Generalized Dual Phase Lag Model, Num Heat Transfer - Part A, vol. 61, pp. 483–501, 2012.
  • M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking, IEEE Trans. Signal Process., vol. 50, pp. 174–188, 2002.
  • B. Ristic, M. S. Arulampalam, and N. Gordon, Beyond the Kalman Filter, Artech House, Boston, MA, 2004.
  • C. Andrieu, A. Doucet, and C. P. Robert, Computational Advances for and from Bayesian, Analysis, Stat. Sci., vol. 19, pp. 118–127, 2004.
  • P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, et al., Review Hyperthermia in Combined Treatment of Cancer, Lancet Oncol., vol. 3, pp. 487–497, 2002.
  • C. K. Chou and R. Ren Radio Frequency Hyperthermia in Cancer Therapy, in: Biomed. Eng. Handb., 2nd ed., 2000.
  • H. H. Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, J. Appl. Physiol., vol. 1, pp. 93–124, 1948.
  • R. Turner and M. Streicher, Measuring Temperature using MRI: A Powerful and Versatile Technique, Magn Reson Mater Phy., vol. 25, pp. 1–3, 2012.
  • D. K. Cheng, Fundamentals of Engineering Electromagnetics, Addison-Wesley Publishing Company, Inc, USA, 1993.
  • R. E. Rosensweig, Heating Magnetic Fluid with Alternating Magnetic Field, J. Magn. Magn. Mater., vol. 252, pp. 370–374, 2002.
  • Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of Magnetic Nanoparticles in Biomedicine, J. Phys. D. Appl. Phys., vol. 36, pp. R167–R181, 2003.
  • S. Gabriel, R. W. Lau, and C. Gabriel, The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues, Phys. Med. Biol., vol. 41, 2271–2293, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.