Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 8
89
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of unsteady natural convection mass transfer caused by g-jitter on protein crystal growth under microgravity

&
Pages 902-916 | Received 30 Mar 2016, Accepted 23 Jun 2016, Published online: 20 Sep 2016

References

  • M. Lappa, C. Piccolo, and L. Carotenuto, Numerical and Experimental Analysis of Periodic Patterns and Sedimentation of Iysozyme, J. Cryst. Growth, vol. 254, pp. 469–486, 2003.
  • A. McPherson, Virus and Protein Crystal Growth on Earth and in Microgravity, J. Phys. D: Appl. Phys., vol. 26, pp. 104–112, 1993.
  • A. Mcpherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, and G. Lawson, The Effect of Microgravity on Protein Crystallization: Evidence for Concentration Gradients Around Growing Crystals, J. Cryst. Growth, vol. 196, pp. 572–586, 1999.
  • C. N. Nanev, A. Penkova, and N. Chayen, Effects of Buoyancy-Driven Convection on Nucleation and Growth of Protein Crystals, Ann. N. Y. Acad. Sci., vol. 1027, pp. 1–9, 2004.
  • P. G. Vekilov, F. Rosenberger, H. Lin, and B. R. Thomas, Nonlinear Dynamics of Layer Growth and Consequences for Protein Crystal Perfection, J. Cryst. Growth, vol. 196, pp. 261–275, 1999.
  • P. G. Vekilov, B. R. Thomas, and F. Rosenberger, Effects of Convective Solute and Impurity Transport on Protein Crystal Growth, J. Phys. Chem. B, vol. 102, pp. 5208–5216, 1998.
  • P. G. Vekilov, Protein Crystal Growth-Microgravity Aspect, Adv. Space Res., vol. 24, pp. 1231–1240, 1999.
  • H. Tanaka, S. Sasaki, S. Takahashi, K. Inaka, Y. Wada, M. Yamada, K. Ohta, H. Miyoshi, T. Kobayashi, and S. Kamigaichi, Numerical Model of Protein Crystal Growth in a Diffusive Field Such as the Microgravity Environment, J. Synchrotron Radiat., vol. 20, pp. 1003–1009, 2013.
  • K. Abe, Y. Nagato, K. Sugioka, M. Kubo, T. Tsukada, and S. Maruyama, Development of a Global Model of Heat Transfer in the Czochralski Furnace Taking into Account Specular Reflection at the Crystal Surface, Numer. Heat Transfer, Part A, vol. 67, pp. 1311–1323, 2015.
  • K. Abe, K. I. Sugioka, M. Kubo, T. Tsukada, and S. Maruyama, Radiation Heat Transfer Analysis in a Semitransparent Single Crystal with Specular Surface: Application of REM2, Numer. Heat Transfer, Part A, vol. 63, pp. 1–13, 2013.
  • I. Gonzalez-Ramirez, J. Carrera, J. Gavira, E. Melero-Garcia, and J. M. Garcia-Ruiz, Granada Crystallization Facility-2: A Versatile Platform for Crystallization in Space, Cryst. Growth Des., vol. 8, pp. 4324–4329, 2008.
  • F. Pietro, S. Jurg, and P. Donald, Characterization of Sodium Chloride Crystals Grown in Microgravity, J. Cryst. Growth, vol. 324, pp. 207–211, 2011.
  • K. Inaka, S. Takahashi, K. Artake, T. Tsurumura, N. Furubayashi, B. Yan, E. Hirota, S. Sano, M. Sato, T. Kobayashi, Y. Yoshimura, H. Tanaka, and Y. Urade, High-Quality Protein Crystal Growth of Mouse Lipocalin-Type Prostaglandin D Synthase in Microgravity, Cryst. Growth Des., vol. 11, pp. 2107–2111, 2011.
  • K. Kinoshita, Y. Arai, and Y. Inatomi, Growth of a Si0.50Ge0.50 Crystal by the Traveling Liquidus-Zone Method in Microgravity, J. Cryst. Growth, vol. 388, pp. 12–16, 2014.
  • W. Becker, J. Marxen, M. Epple, and O. Reelsen, Influence of Microgravity on Crystal Formation in Biomineralization, J. Appl. Physiol., vol. 89, pp. 1601–1607, 2000.
  • N. E. Chayen and J. R. Helliwell, Microgravity Protein Crystallization-Are we Reaping the Full Benefit of Outer Space, Ann. N. Y. Acad. Sci., vol. 974, pp. 591–597, 2002.
  • W. Wang and W. R. Hu, Concentration Distribution in Crystallization from Solution Under Microgravity, J. Cryst. Growth, vol. 160, pp. 398–405, 1996.
  • A. I. Feonychev and G. A. Dolgikh, Effects of Constant and Variable Accelerations on Crystals Growth on Board Spacecraft by the Method of Directional Crystallization, Cosmic Res., vol. 39, pp. 390–399, 2001.
  • Z. Li, M. Yang, and Y. Zhang, Numerical Simulation of Melting Problems Using the Lattice Boltzmann Method with the Interfacial Tracking Method, Numer. Heat Transfer, Part A: Appl., vol. 68, pp. 1175–1197, 2015.
  • Z. Li, M. Yang, and Y. Zhang, A Hybrid Lattice Boltzmann and Finite Volume Method for Melting with Natural Convection, Numer. Heat Transfer, Part B: Fundam., vol. 66, no. 4, pp. 307–325, 2014.
  • L. Carotenuto, J. H. E. Cartwrght, D. Castagnolo, J. M. Garcia Ruiz, and F. Otalora, Theory and Simulation of Buoyancy Driven Convection Around Growing Protein Crystals in Microgravity, Microgravity Sci. Technol., vol. 13, pp. 14–21, 2002.
  • V. A. Brailovskaya, V. V. Zil’berberg, and L. V. Feoktistova, Investigation of the Effect of Microgravity on Convection and Mass Transfer During Crystal Growth from Aqueous Solution, Fluid Dyn., vol. 29, pp. 640–644, 1994.
  • J. Qi and N. I. Wakayama, Solute Convection During the Whole Process of Protein Crystal Growth, J. Cryst. Growth, vol. 219, pp. 465–476, 2000.
  • M. Lappa and L. Carotenuto, Effect of Convective Disturbances Induced by G-jitter on the Periodic Precipitation of Iysozyme, vol. 14, pp. 41–56, 2003.
  • J. Straub and S. Schneider, Transient Convection Caused by Acceleration Disturbances, Microgravity Sci. Technol., vol. 1, pp. 27–34, 1992.
  • P. G. Siddheshwar and B. R. Revathi, Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid, World Acad. Sci., Eng. Technol., vol. 7, pp. 840–845, 2013.
  • N. Ramachandran and C. Baugher, G-jitter Effects in Protein Crystal Growth-A Numerical Study, 1995, The 26th AIAA Fluid Dyn. Conf. June 19–22, San Diego.
  • N. Ramachandran, C. R. Baugher, and R. J. Naumann, Modeling Flows and Transport in Protein Crystal Growth, Microgravity Sci. Technol., vol. 8, pp. 170–179, 1995.
  • A. Yeckel and J. J. Derby, Dynamics of Three Dimensional Convection in Microgravity Crystal Growth: G-jitter with Steady Magnetic Fields, J. Cryst. Growth, vol. 263, pp. 40–52, 2004.
  • M. Lappa and L. Carotenuto, Effect of Convective Disturbances Induced by G-jitter on the Periodic Precipitation of Iysozyme, Effect of Convective Disturbances Induced by G-jitter on the Periodic Precipitation of Iysozyme, Microgravity Sci. Technol., vol. 14, pp. 41–56, 2003.
  • K. Li, B. Q. Li, and J. Handa, Three-Dimensional Numerical Simulation of G-jitter Induced Convection and Solute Transport in Magnetic Fields, Int. J. Numer. Methods Heat Fluid Flow, vol. 15, pp. 872–893, 2005.
  • S. Simic-Stefani, M. Kawaji, and H. H. Hu, G-jitter Induced Motion of a Protein Crystal Under Microgravity, J. Cryst. Growth, vol. 294, pp. 373–384, 2006.
  • L. B. Wang, N. I. Wakayama, and W. Q. Tao, The Role of Solutal Convection in Protein Crystal Growth-A New Dimensionless Number to Evaluate the Effects of Convection on Protein Crystal Growth, J. Cryst. Growth, vol. 310, pp. 5370–5374, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.