Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 2
203
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on the thermohydraulic performance of a shell-and-double concentric tube heat exchanger using nanofluid under the turbulent flow regime

, , &
Pages 215-231 | Received 10 Jun 2016, Accepted 04 Nov 2016, Published online: 13 Feb 2017

References

  • U. S. Stephen and Choi, Enhancing thermal conductivity of fluids with nanoparticles, Proc. 1995 ASME Int. Mech. Eng. Congr. Expo., 66, pp. 99–105, 1995.
  • Y. Xuan and Q. Li, Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, vol. 21, pp. 58–64, 2000.
  • S. E. B. Maïga, C. T. Nguyen, N. Galanis, and G. Roy, Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlattices Microstruct., vol. 35, pp. 543–557, 2004
  • P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties, Int. J. Therm. Sci., vol. 48, pp. 290–302, 2009.
  • J. Bayat and A. H. Nikseresht, Thermal Performance and Pressure Drop Analysis of Nano Fluids in Turbulent Forced Convective Flows, Int. J. Therm. Sci., vol. 60, pp. 236–243, 2012.
  • T. Sokhansefat, A. B. Kasaeian, and F. Kowsary, Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/synthetic Oil Nanofluid, Renewable Sustainable Energy Rev., vol. 33, pp. 636–644, 2014.
  • S. M. Vanaki, H. A. Mohammed, A. Abdollahi, and M. A. Wahid, Effect of Nanoparticle Shapes on the Heat Transfer Enhancement in a Wavy Channel with Different Phase Shifts, J. Mol. Liq., vol. 196, pp. 32–42, 2014.
  • W. I. A. Aly, Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-tube Heat Exchangers, Energy Convers. Manage., vol. 79, pp. 304–316, 2014.
  • M. M. Elias, M. Miqdad, I. M. Mahbubul, R. Saidur, M. Kamalisarvestani, M. R. Sohel, A. Hepbasli, N. A. Rahim, and M. A. Amalina, Effect of Nanoparticle Shape on the Heat Transfer and Thermodynamic Performance of a Shell and Tube Heat Exchanger, Int. Commun. Heat Mass Transfer, vol. 44, pp. 93–99, 2013.
  • M. M. Elias, I. M. Shahrul, I. M. Mahbubul, R. Saidur, and N. A. Rahim, Effect of Different Nanoparticle Shapes on Shell and Tube Heat Exchanger using Different Baffle Angles and Operated with Nanofluid, Int. J. Heat Mass Transfer, vol. 70, pp. 289–297, 2014.
  • J. Sarkar, Performance of Nanofluid-cooled Shell and Tube Gas Cooler in Transcritical CO2 Refrigeration Systems, Appl. Therm. Eng., vol. 31, pp. 2541–2548, 2011.
  • A. Ghozatloo, A. Rashidi, and M. Shariaty-Niassar, Convective Heat Transfer Enhancement of Graphene Nanofluids in Shell and Tube Heat Exchanger, Exp. Therm. Fluid Sci., vol. 53, pp. 136–141, 2014.
  • I. M. Shahrul, I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, M. F. M. Sabri, and M. M. Rahman, Effectiveness Study of a Shell and Tube Heat Exchanger Operated with Nanofluids at Different Mass Flow Rates, Numer. Heat Transfer;Part A, vol. 65, no. 7, pp. 699–7134, 2014.
  • B. Farajollahi, S. G. Etemad, and M. Hojjat, Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger, Int. J. Heat Mass Transfer, vol. 53, pp. 12–17, 2010.
  • M. Bahiraei, M. Hangi, and M. Saeedan, A Novel Application for Energy Efficiency Improvement using Nanofluid in Shell and Tube Heat Exchanger Equipped with Helical Baffles, Energy, vol. 93, pp. 2229–2240, 2015.
  • M. Bahiraei, S. Mostafa Hosseinalipour, and M. Saeedan, Prediction of Nusselt Number and Friction Factor of Water-Al2O3 Nanofluid Flow in Shell-and-Tube Heat Exchanger with Helical Baffles, Chem. Eng. Commun., vol. 202, pp. 260–268, 2015.
  • M. Akhtari, M. Haghsenasfard, and M. R. Talaie, Numerical and Experimental Investigation of Heat Transfer of α-Al 2O3/water Nanofluid in Double Pipe and Shell and Tube Heat Exchangers, Numer. Heat Transfer; Part A, vol. 63, pp. 941–958.
  • B. C. Pak and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles, Exp. Heat Transfer, vol. 11, pp. 151–170, 1998.
  • E. B. Haghighi, A. T. Utomo, M. Ghanbarpour, A. I. T. Zavareh, H. Poth, R. Khodabandeh, A. Pacek, and B. E. Palm, Experimental Study on Convective Heat Transfer of Nanofluids in Turbulent Flow: Methods of Comparison of Their Performance, Exp. Therm. Fluid Sci., vol. 57, pp. 378–387, 2014.
  • E. B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, M. S. Toprak, M. Muhammed, and B. Palm, Accurate Basis of Comparison for Convective Heat Transfer in Nanofluids, Int. Commun. Heat Mass Transfer, vol. 52, pp. 1–7, 2014.
  • Z. Wu, L. Wang, and B. Sundén, Pressure Drop and Convective Heat Transfer of Water and Nanofluids in a Double-pipe Helical Heat Exchanger, Appl. Therm. Eng., vol. 60, pp. 266–274, 2013.
  • Y. Xuan and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transfer, vol. 125, pp. 151–155, 2003.
  • C. Bougriou and K. Baadache, Shell-and-double Concentric-tube Heat Exchangers, Heat Mass Transfer, vol. 46, pp. 315–322, 2010.
  • R. K. Shah and D. P. Sekulić, Fundamentals of Heat Exchanger Design, pp. 906–909, John Wiley & Sons Inc., New Jersey, 2003.
  • E. Ozden and I. Tari, Shell Side CFD Analysis of a Small Shell-and-tube Heat Exchanger. Energy Convers. Manage., vol. 51, pp. 1004–1014, 2010.
  • X. Tan, D. Zhu, G. Zhou, and L. Yang, 3D Numerical Simulation on the Shell Side Heat Transfer and Pressure Drop Performances of Twisted Oval Tube Heat Exchanger. Int. J. Heat Mass Transfer, vol. 65, pp. 244–253, 2013.
  • G. Saha and M. Paul, Numerical Analysis of the Heat Transfer Behaviour of Water Based Al2O3 and TiO2 Nanofluids in a Circular Pipe Under the Turbulent Flow Condition. Int. Commun. Heat Mass Transfer, vol. 56, pp. 96–108, 2014.
  • J. F. Yang, M. Zeng, and Q. W. Wang, Numerical Investigation on Shell-side Performances of Combined Parallel and Serial Two Shell-pass Shell-and-Tube Heat Exchangers with Continuous Helical Baffles, Appl. Energy, vol. 139, pp. 163–174, 2015.
  • ANSYS FLUENT 13.0, Theory guide, Ansys Inc., 2010.
  • E. Boqvist, Investigation of A Swing Check Valve Using CFD, M.Sc. Thesis, Linkopongs Universitet, Sweden, 2013.
  • Y. You, Y. Chen, M. Xie, X. Luo, L. Jiao, and S. Huang, Numerical Simulation and Performance Improvement for a Small Size Shell-and-tube Heat Exchanger with Trefoil-hole Baffles, Appl. Therm. Eng., vol. 89, pp. 220–228, 2015.
  • F. Kreith and M. S. Bohn, Principles of Heat Transfer, PWS Publishing Company, London, 1997.
  • M. M. Heyhat, F. Kowsary, A. M. Rashidi, M. H. Momenpour, and A. Amrollahi, Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-based Al2O3 Nanofluids in Fully Developed Flow Regime, Exp. Therm. Fluid Sci., vol. 44, pp. 483–489, 2012.
  • Y. A. Cengel, J. M. Cimbala, and R. H. Turner, Fundamentals of Thermal-Fluid Sciences, 4th ed., pp. 552–555, McGraw-Hill Education, New York, 2012.
  • A. D. Sommer and K. L. Yerkes, Experimental Investigation into the Convective Heat Transfer and System-level Effects of Al2O3-propanol Nanofluid, J. Nanopart. Res., vol. 12, pp. 1003–1014, 2010.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, Heat Transfer and Flow Characteristics of AL2O3-water Nanofluid in a Double Tube Heat Exchanger, Int. Commun. Heat Mass Transfer, vol. 47, pp. 105–112, 2013.
  • H. Maddah, M. Alizadeh, N. Ghasemi, and S. R. Wan Alwi, Experimental Study of Al2O3/water Nanofluid Turbulent Heat Transfer Enhancement in the Horizontal Double Pipes Fitted with Modified Twisted Tapes, Int. J. Heat Mass Transfer, vol. 78, pp. 1042–1054, 2014.
  • M. M. Sarafraz and F. Hormozi, Intensification of Forced Convection Heat Transfer Using Biological Nanofluid in a Double-pipe Heat Exchanger, Exp. Thermal Fluid Sci., vol. 66, pp. 279–289, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.