Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 6
206
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of convection from a finned cylinder in cross flow using direct simulation, turbulence modeling, and correlation-based methods

&
Pages 591-608 | Received 03 Aug 2016, Accepted 28 Nov 2016, Published online: 10 Mar 2017

References

  • D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed., DCW Industries, La Canada, CA, 2010.
  • M. A. R. Sharif and K. K. Mothe, Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces, Numer. Heat Transfer, Part B, vol. 55, no. 4, pp. 273–294, 2009.
  • F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
  • F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker, A Correlation-Based Transition Model Using Local Variables Part 1 – Model Formulation, ASME GT2004–53452, Proc. ASME Turbo Expo, Power for Land Sea and Air, June 14–17, Vienna, Austria, 2004.
  • F. R. Menter, R. B. Langtry, and S. Volker, Transition Modelling for General Purpose CFD Codes, Flow Turbul. Combust., vol. 77, pp. 277–303, 2006.
  • F. Menter, T. Esch, and S. Kubacki, Transition Modelling based on Local Variables, Fifth Int. Symp. Eng. Turbul. Model Meas., Mallorca, Spain, 2002.
  • W. P. Jones and B. E. Launder, The Prediction of Laminarization with a Two-Equation Model of Turbulence, Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.
  • V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys. Fluids A, vol. 4, no. 7, pp. 1510–1520, 1992.
  • S. Wallin and A. V. Johansson, An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows, J. Fluid Mech., vol. 403, pp. 89–132, 2000.
  • H. Nemati and M. Moghimi, Numerical Study of Flow over Annular-Finned Tube Heat Exchangers by Different Turbulent Models, CFD Lett, vol. 6, no. 3, pp. 101–112, 2014.
  • Y. Mao and Y. Zhang, Evaluation of Turbulent Models for Natural Convection of Compressible Air in a Tall Cavity, Numer. Heat Transfer, Part B Fundam., vol. 64, no. 5, pp. 351–364, 2013.
  • L. A. El-Gabry, and D. A. Kaminski, Numerical Investigation of Jet Impingement with Cross Flow - Comparison of Yang-Shih, and Standard k–ϵ Turbulence Models, Numer. Heat Transfer Part A Appl., vol. 47, no. 5, pp. 441–469, 2005.
  • A. Keshmiri, J. Uribe, and N. Shokri, Benchmarking of Three Different CFD Codes in Simulating Natural, Forced, and Mixed Convection Flows, Numer. Heat Transfer Part A Appl., vol. 67, no. 12, pp. 1324–1351, 2015.
  • A. A. Igci and M. E. Arici, A Comparative Study of Four Low-Reynolds-Number k-ε Turbulence Models for Periodic Fully Developed Duct Flow, and Heat Transfer, Numer. Heat Transfer, Part B Fundam., vol. 69, no. 3, pp. 234–248, 2016.
  • L. Badr, G. Boardman, and J. Bigger, Review of Water use in U.S. Thermoelectric Power Plants, J. Energy Eng., vol. 138, no. 4, pp. 246–257, 2012.
  • H. Koch and S. Vögele, Dynamic Modelling of Water Demand, Water Availability and Adaptation Strategies for Power Plants to Global Change, Ecol. Econ., vol. 68, no. 7, pp. 2031–2039, 2009.
  • H. Shabgard, M. J. Allen, N. Sharifi, S. P. Benn, A. Faghri, and T. L. Bergman, Heat Pipe Heat Exchangers, and Heat Sinks: Opportunities, Challenges, Applications, Analysis, and State of the Art, Int. J. Heat Mass Transfer, vol. 89, pp. 138–158, 2015.
  • S. P. Benn, L. M. Poplaski, A. Faghri, and T. L. Bergman, Analysis of Thermosyphon/Heat Pipe Integration for Feasibility of Dry Cooling for Thermoelectric Power Generation, Appl. Therm. Eng., vol. 104, pp. 358–374, 2016.
  • J. R. Stark, N. Sharifi, T. L. Bergman, and A. Faghri, An Experimentally Verified Numerical Model of Finned Heat Pipes in Cross Flow, Int. J. Heat Mass Transfer, vol. 97, pp. 45–55, 2016.
  • L. M. Poplaski, A. Faghri, and T. L. Bergman, Analysis of Internal and External Thermal Resistances of Heat Pipes including Fins using a Three-Dimensional Numerical Simulation, Int. J. Heat Mass Transfer, vol. 102, pp. 455–469, 2016.
  • N. Sharifi, J. R. Stark, T. L. Bergman, and A. Faghri, The Influence of Thermal Contact Resistance on the Relative Performance of Heat Pipe-Fin Array Systems, Appl. Therm. Eng., vol. 105, pp. 46–55, 2016.
  • A. A. El-Nasr and S. M. El-Haggar, Effective Thermal Conductivity of Heat Pipes, Heat Mass Transfer, vol. 32, no. 1–2, pp. 97–101, 1996.
  • A. Faghri Heat Pipe Science and Technology, Taylor & Francis, Washington, DC, 1995.
  • S. P. Kearney and A. M. Jacobi Local and Average Heat Transfer and Pressure Drop Characteristics of Annularly Finned Tube Heat Exchangers, ACRC TR-69, University of Illinois, Urbana, IL, 1998.
  • X. Hu and A. M. Jacobi, Local Heat Transfer Behavior, and its Impact on a Single-Row, Annularly Finned Tube Heat Exchanger, ASME J. Heat Transfer, vol. 115, no. 1, pp. 66–74, 1993.
  • E. M. Sparrow and F. Samie, Heat Transfer and Pressure Drop results for One- and Two-Row Arrays of Finned Tubes, Int. J. Heat Mass Transfer, vol. 28, no. 12, pp. 2247–2259, 1985.
  • F. E. M. Saboya and E. M. Sparrow, Local and Average Transfer Coefficients for One-Row Plate Fin and Tube Heat Exchanger Configurations, ASME J. Heat Transfer, vol. 96, pp. 265–272, 1974.
  • S. M. Saboya and F. E. M. Saboya, Experiments on Elliptic Sections in One and Two Row Arrangements of Plate Fin and Tube Heat Exchangers, Exp. Therm. Fluid Sci., vol. 24, pp. 67–75, 2001.
  • F. E. M. Saboya and E. M. Sparrow, Effect of Tube Relocation on the Transfer Capabilities of a Fin and Tube Heat Exchanger, ASME J. Heat Transfer, vol. 96, pp. 421–422, 1974.
  • C. J. Baker, The Laminar Horseshoe Vortex, J. Fluid Mech., vol. 95, pp. 347–367, 1979.
  • C. J. Baker, The Oscillation of Horseshoe Vortex Systems, J. Fluids Eng., vol. 113, pp. 489–495, 1991.
  • J. Yin, Z. He, F. Chen, and J. Ma, Effect of Tube Location Change on Heat Transfer Characteristics of Plain Plate Fin-and-Tube Heat Exchangers, ASME J. Therm. Sci. Eng. Appl., vol. 6, no. 2, 021005, 2013.
  • R. Romero-Mendez, M. Sen, K. T. Yang, and R. Mc Clain, Effect of Fin Spacing on Convection in Plate Fin and Tube Heat Exchanger, Int. J. Heat Mass Transfer, vol. 43, no. 1, pp. 39–51, 2000.
  • R. Romero-Méndez, Study of External Heat Transfer Mechanisms in Single-Row Fin and Tube Heat Exchangers, Ph.D. dissertation, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA, 1998
  • M. J. Allen, T. L. Bergman, A. Faghri, and N. Sharifi, Robust Heat Transfer Enhancement During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration, ASME J. Heat Transfer, vol. 137, no. 10, pp. 102301-1-102301–12, 2015
  • N. Sharifi, T. L. Bergman, M. J. Allen, and A. Faghri, Melting, and Solidification Enhancement Using a Combined Heat Pipe, Foil Approach, Int. J. Heat Mass Transfer, vol. 78, pp. 930–941, 2014.
  • E. M. Sparrow and J. P. Abraham, A new Buoyancy Model Replacing the Standard Pseudo-Density Difference for Internal Natural Convection in Gases, Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3583–3591, 2003.
  • J. P. Abraham, E. M. Sparrow, and J. C. K. Tong, Heat Transfer in all Pipe Flow Regimes - Laminar, Transitional/Intermittent, and Turbulent, Int. J. Heat Mass Transfer, vol. 52, pp. 557–563, 2009.
  • J. P. Abraham, E. M. Sparrow, and W. J. Minkowycz, Internal-Flow Nusselt Numbers for the Low-Reynolds-Number end of the Laminar-to-Turbulent Transition Regime, Int. J. Heat Mass Transfer, vol. 54, pp. 584–588, 2011.
  • J. P. Abraham, E. M. Sparrow, J. C. K. Tong, and D. W. Bettenhausen, Internal Flows which Transist from Turbulent through Intermittent to Laminar, Int. J. Therm. Sci., vol. 49, pp. 256–263, 2010.
  • J. C. K. Tong, J. P. Abraham, J. M. Y. Tse, and E. M. Sparrow, Impact of Chamfer Contours to Reduce Column Drag, Eng. Comput. Mech., vol. 168, pp. 79–88, 2015.
  • J. C. K. Tong, J. P. Abraham, J. M. Y. Tse, W. J. Minkowycz, and E. M. Sparrow, New Archive of Heat Transfer Coefficients from Square and Chamfered Cylinders in Crossflow, Int. J. Therm. Sci., vol. 105, pp. 218–223, 2016.
  • W. J. Minkowycz, J. P. Abraham, and E. M. Sparrow, Numerical Simulation of Laminar Breakdown and Subsequent Intermittent and Turbulent Flow in Parallel-Plate Channels: Effects of Inlet Velocity Profile and Turbulence Intensity, Int. J. Heat Mass Transfer, vol. 52, no. 17–18, pp. 4040–4046, 2009.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, Hoboken, 2011.
  • E. M. Sparrow, J. P. Abraham, and J. C. K. Tong, Archival Correlations for Average Heat Transfer Coefficients for Non-Circular and Circular Cylinders and for Spheres in Crossflow, Int. J. Heat Mass Transfer, vol. 47, no. 24, pp. 5285–5296, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.