Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 10
201
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation on the slag flow and heat transfer characteristics of the cyclone barrel for a cyclone-fired boiler

, , , &
Pages 1052-1065 | Received 16 Jan 2017, Accepted 27 Apr 2017, Published online: 16 Jun 2017

References

  • H. Sarv, A. N. Sayre, and G. J. Maringo, Selective Use of Oxygen and In-Furnace Combustion Techniques for Nox Reduction in Coal Burning Cyclone Boilers, 33rd Int. Tech. Conf. on Coal Util. Fuel Syst Clearwater. Florida, USA, Paper No. 1809, 2008.
  • H. Farzan, G. J. Maringo, D. W. Johnson, D. K. Wong, C. T. Beard, and S. E. Brewster, B&W Advances on Cyclone Nox Control via Fuel and Air Staging Technologies, EPRI-DOE-EPA Comb. Util. Air Pollut. Control. Atlanta, Georgia, USA, Paper No. 1683, 1999.
  • B. Adams, M. Cremer, J. Valentine, V. Bhamidipati, and D. O’Connor, Use of CFD Modeling for Design of Nox Reduction Systems in Utility Boilers, 2002 Int. Jt. Power Gener. Conf. Phoenix, AZ, USA, Paper No. 26081, 2002.
  • F. Ren, Z. Li, L. Zeng, Z. Chen, and Q. Zhu, Numerical Simulation of Flow Combustion, and Nox Emission Characteristics in a 300 MW Down-Fired Boiler with Different OFA Ratios, Numer. Heat Transfer, Part A, vol. 71, no. 10, pp. 231–249, 2012.
  • Z. Li, L. Zeng, G. Zhao, J. Li, S. Shen, and F. Zhang, Numerical Simulations of Combustion Characteristics and Nox Emissions for Two Configurations of Swirl Coal Burners in a 300 Mwe Wall-Fired Boiler, Numer. Heat Transfer, Part A, vol. 71, no. 10, pp. 441–460, 2011.
  • L. Zeng, Z. Li, G. Zhao, S. Shen, and F. Zhang, Effect of the Vane Angle for Outer Secondary Air on the Flow and Combustion Characteristics and Nox Emissions of the Low-Nox Axial-Swirl Coal Burner, Numer. Heat Transfer, Part A, vol. 71, no. 10, pp. 43–57, 2011.
  • S. Wu, W. Bai, C. Tang, X. Tan, C. Wang, and D. Che, A Novel Boiler Design for High-Sodium Coal in Power Generation, ASME 2015 Power Conf., San Diego, CA, USA, Paper No. 49167, 2015.
  • S. Z. Yong, M. Gazzino, and A. Ghoniem, Modeling the Slag Layer in Solid Fuel Gasification and Combustion: Formulation and Sensitivity Analysis, Fuel, vol. 71, pp. 162–170, 2012.
  • S. Z. Yong and A. Ghoniem, Modeling the Slag Layer in Solid Fuel Gasification and Combustion: Two-Way Coupling with CFD, Fuel, vol. 71, pp. 457–466, 2012.
  • L. Chen and A. F. Ghoniem, Development of a Three-Dimensional Computational Slag Flow Model for Coal Combustion and Gasification, Fuel, vol. 71, pp. 357–366, 2013.
  • L. Chen, S. Z. Yong, and A. F. Ghoniem, Modeling the Slag Behavior in Three Dimensional CFD Simulation of a Vertically-Oriented Oxy-Coal Combustor, Fuel Process. Technol., vol. 71, pp. 106–117, 2013.
  • X. H. Wang, D. Q. Zhao, L. B. He, L. Q. Jiang, Q. He, and Y. Chen, Modeling of a Coal-Fired Slagging Combustor: Development of a Slag Submodel, Combust. Flame, vol. 71, pp. 249–260, 2007.
  • X. Wang, D. Zhao, L. Jiang, and W. Yang, The Deposition and Burning Characteristics during Slagging Co-Firing Coal and Wood: Modeling and Numerical Simulation, Combust. Sci. Technol., vol. 71, pp. 710–728, 2009.
  • M. Seggiani, Modelling and Simulation of Time Varying Slag Flow in a Prenflo Entrained-Flow Gasifier, Fuel, vol. 71, no. 10, pp. 1611–1621, 1998.
  • B. Li, A. Brink, and M. Hupa, Simplified Model for Determining Local Heat Flux Boundary Conditions for Slagging Wall, Energy Fuels, vol. 71, pp. 3418–3422, 2009.
  • D. Bi, Q. Guan, W. Xuan, and J. Zhang, Combined Slag Flow Model for Entrained Flow Gasification, Fuel, vol. 71, pp. 565–572, 2015.
  • J. Ni, G. Yu, Q. Guo, Z. Zhou, and F. Wang, Submodel for Predicting Slag Deposition Formation in Slagging Gasification Systems, Energy Fuels, vol. 71, pp. 1004–1009, 2011.
  • X. Li, G. Li, Z. Cao, and S. Xu, Research on Flow Characteristics of Slag Film in a Slag Tapping Gasifier, Energy Fuels, vol. 71, pp. 5109–5115, 2010.
  • I. Ye, C. Ryu, and J. H. Koo, Influence of Critical Viscosity and Its Temperature on the Slag Behavior on the Wall of an Entrained Coal Gasifier, Appl. Therm. Eng., vol. 71, pp. 175–184, 2015.
  • I. Ye and C. Ryu, Numerical Modeling of Slag Flow and Heat Transfer on the Wall of an Entrained Coal Gasifier, Fuel, vol. 71, pp. 64–74, 2015.
  • H. Wang and J. N. Harb, Modeling of Ash Deposition in Large-Scale Combustion Facilities Burning Pulverized Coal, Prog. Energy Combust. Sci., vol. 71, pp. 267–282, 1997.
  • A. A. Bhuiyan and J. Naser, Modeling of Slagging in Industrial Furnace: A Comprehensive Review, Procedia Eng., vol. 71, pp. 512–519, 2015.
  • J. Ni, Z. Zhou, G. Yu, Q. Liang, and F. Wang, Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier, Ind. Eng. Chem. Res, vol. 71, no. 10, pp. 12302–12310, 2010.
  • J. Yanke and K. Fezi, Simulation of Slag-Skin Formation in Electroslag Remelting Using a Volume-Of-Fluid Method, Numer. Heat Transfer, Part A, vol. 71, no. 10, pp. 268–292, 2015.
  • B. E. Lee, C. A. Fletcher, S. H. Shin, and S. B. Kwon, Computational Study of Fouling Deposit Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers, Fuel, vol. 71, pp. 2001–2008, 2002.
  • W. Bai, H. Li, L. Deng, H. Liu, and D. Che, Air-Staged Combustion Characteristics of Pulverized Coal under High Temperature and Strong Reducing Atmosphere Conditions, Energy Fuels, vol. 71, pp. 1820–1828, 2014.
  • K. S. Vorres, Mineral Matter and Ash in Coal, pp. 200–222, The American Chemical Society, Seattle, Washington, 1984.
  • K. C. Mills and J. M. Rhine, The Measurement and Estimation of the Physical Properties of Slags Formed during Coal Gasification: 1. Properties Relevant to Fluid Flow, Fuel, vol. 71, pp. 193–200, 1989.
  • K. C. Mills and J. M. Rhine, The Measurement and Estimation of the Physical Properties of Slags Formed during Coal Gasification: 2. Properties Relevant to Heat Transfer, Fuel, vol. 71, pp. 904–910, 1989.
  • G. J. Browning, G. W. Bryant, H. J. Hurst, J. A. Lucas, and T. F. Wall, An Empirical Method for the Prediction of Coal Ash Slag Viscosity, Energy Fuels, vol. 17,no. 3, pp. 731–737, 2003.
  • W. Song, L. Tang, X. Zhu, Y. Wu, Y. Rong, Z. Zhu, and S. Koyama, Fusibility and Flow Properties of Coal Ash and Slag, Fuel, vol. 71, pp. 297–304, 2009.
  • W. J. Song, L. H. Tang, X. D. Zhu, Y. Q. Wu, Z. B. Zhu, and S. Koyama, Effect of Coal Ash Composition on Ash Fusion Temperatures, Energy Fuels, vol. 71, pp. 182–189, 2009.
  • G. Urbain, Y. Bottinga, and P. Richet, Viscosity of Liquid Silica, Silicates and Alumino-Silicates, Geochim. Cosmochim. Acta, vol. 71, pp. 1061–1072, 1982.
  • R. Vuthaluru and H. B. Vuthaluru, Modelling of a Wall Fired Furnace for Different Operating Conditions Using FLUENT, Fuel Process. Technol., vol. 71, pp. 633–639, 2006.
  • M. Gu, M. Zhang, W. Fan, L. Wang, and F. Tian, The Effect of the Mixing Characters of Primary and Secondary Air on Nox Formation in a Swirling Pulverized Coal Flame, Fuel, vol. 71, pp. 2093–2101, 2005.
  • M. B. Gandhi, R. Vuthaluru, H. Vuthaluru, D. French, and K. Shah, CFD Based Prediction of Erosion Rate in Large Scale Wall-Fired Boiler, Appl. Therm. Eng., vol. 71, pp. 90–100, 2012.
  • H. Liu, Y. Liu, G. Yi, L. Nie, and D. Che, Effects of Air Staging Conditions on the Combustion and Nox Emission Characteristics in a 600 MW Wall Fired Utility Boiler Using Lean Coal, Energy Fuels, vol. 71, pp. 5831–5840, 2013.
  • H. Liu, C. Tang, L. Zhang, H. Zhu, L. Nie, and D. Che, Effect of Two-Level Over-Fire Air on the Combustion and Nox Emission Characteristics in a 600 MW Wall-Fired Boiler, Numer. Heat Transfer, Part A, vol. 71, no. 10, pp. 993–1009, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.