Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 10
1,035
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice Boltzmann modeling

, , &
Pages 745-764 | Received 21 Aug 2017, Accepted 14 Nov 2017, Published online: 20 Dec 2017

References

  • H. Chen et al., “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, 2009. DOI: 10.1016/j.pnsc.2008.07.014.
  • X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Appl. Energy, vol. 137, pp. 511–536, 2015. DOI: 10.1016/j.apenergy.2014.09.081.
  • P. V. Varun and S. K. Singal, “Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material,” Renew. Sustain. Energy Rev., vol. 12, pp. 999–1031, 2008. DOI: 10.1016/j.rser.2006.11.002.
  • A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev., vol. 13, pp. 318–345, 2009. DOI: 10.1016/j.rser.2007.10.005.
  • F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS),” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 615–628, 2010. DOI: 10.1016/j.rser.2009.10.015.
  • O. Mesalhy, K. Lafdi, A. Elgafy, and K. Bowman, “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Convers. Manage., vol. 46, pp. 847–867, 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs),” Sol. Energy, vol. 84, pp. 1402–1412, 2010. DOI: 10.1016/j.solener.2010.04.022.
  • D. Zhou and C. Y. Zhao, “Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials,” Appl. Therm. Eng., vol. 31, pp. 970–977, 2011. DOI: 10.1016/j.applthermaleng.2010.11.022.
  • W. Zhao, D. M. France, W. Yu, T. Kim, and D. Singh, “Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants,” Renew. Energy, vol. 69, pp. 134–146, 2014. DOI: 10.1016/j.renene.2014.03.031.
  • K. Nithyanandam and R. Pitchumani, “Computational studies on metal foam and heat pipe enhanced latent thermal energy storage,” J. Heat Transfer, vol. 136, 051503, 2014. DOI: 10.1115/1.4026040.
  • Z. Chen, D. Gao, and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale,” Int. J. Heat Mass Transfer, vol. 72 pp. 646–655, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
  • P. Zhang, X. Xiao, Z. N. Meng, and M. Li, “Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement,” Appl. Energy, vol. 137, pp. 758–772, 2015. DOI: 10.1016/j.apenergy.2014.10.004.
  • Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016. DOI: 10.1016/j.applthermaleng.2015.10.016.
  • Y. Xu, Q. Ren, Z.-J. Zheng, and Y.-L. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Appl. Energy, vol. 193, pp. 84–95, 2017. DOI: 10.1016/j.apenergy.2017.02.019.
  • X. Chen, F. Tavakkoli, and K. Vafai, “Analysis and characterization of metal foam-filled double-pipe heat exchangers,” Numer. Heat Transfer, A, vol. 68, no. 10, pp. 1031–1049, 2015. DOI: 10.1080/10407782.2015.1031607.
  • P. V. S. S. Srivatsa, R. Baby, and C. Balaji, “Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins,” Numer. Heat Transfer A, vol. 66, no. 10, pp. 1131–1153, 2014. DOI: 10.1080/10407782.2014.894371.
  • Z. Li, J. Zhang, Z. Wang, Y. Song, and L. Zhao, “Study on the thermal properties of closed-cell metal foams based on voronoi random models,” Numer. Heat Transfer A, vol. 64, no. 12, pp. 1038–1049, 2013. DOI: 10.1080/10407782.2013.811159.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech., vol. 30, pp. 329–64, 1998.
  • Y. He, Q. Li, Y. Wang, and G. Tang, “Lattice Boltzmann method and its applications in engineering thermophysics,” Chin. Sci. Bull., vol. 54, pp. 4117, 2009. DOI: 10.1007/s11434-009-0681-6.
  • C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann method for complex flows,” Annu. Rev. Fluid Mech., vol. 42, pp. 439–72, 2010. DOI: 10.1146/annurev-fluid-121108-145519.
  • W. Miller, “The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow,” J. Cryst. Growth, vol. 230, no. 1–2, pp. 263–269, 2001. DOI: 10.1016/s0022-0248(01)01353-7.
  • I. Rasin, W. Miller, and S. Succi, “Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth,” Phys. Rev. E, vol. 72, no. 6, 2005. DOI: 10.1103/physreve.72.066705.
  • W. S. Jiaung, J. R. Ho, and C. P. Kuo, “Lattice Boltzmann method for the heat conduction problem with phase change,” Numer. Heat Transfer B, vol. 39, pp. 167–187, 2001. DOI: 10.1080/10407790150503495.
  • S. Chakraborty and D. Chatterjee, “An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport,” J. Fluid Mech., vol. 592, pp. 155–176, 2007. DOI: 10.1017/s0022112007008555.
  • C. Huber, A. Parmigiani, B. Chopard, M. Manga, and O. Bachmann, “Lattice Boltzmann model for melting with natural convection,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1469–1480, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.002.
  • M. Eshraghi and S. D. Felicelli, “An implicit lattice Boltzmann model for heat conduction with phase change,” Int. J. Heat Mass Transfer, vol. 55, no. 9–10, pp. 2420–2428, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.01.018.
  • R. Z. Huang, H. Y. Wu, and P. Cheng, “A new lattice Boltzmann model for solid–liquid phase change,” Int. J. Heat Mass Transfer, vol. 59, pp. 295–301, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.027.
  • R. Z. Huang and H. Y. Wu, “Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid–liquid phase change,” J. Comput. Phys., vol. 294, pp. 346–362, 2015. DOI: 10.1016/j.jcp.2015.03.064.
  • D. Li, Q. Ren, Z.-X. Tong, and Y.-L. He, “Lattice Boltzmann models for axisymmetric solid-liquid phase change,” Int. J. Heat Mass Transfer, vol. 112, pp. 795–804, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.127.
  • R. Z. Huang and H. Y. Wu, “An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change,” J. Comput. Phys., vol. 277, pp. 305–319, 2014. DOI: 10.1016/j.jcp.2014.08.020.
  • Q. Kang, P. C. Lichtner, and D. Zhang, “Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media,” J. Geophys. Res., vol. 111, pp. B05203, 2006. DOI: 10.1029/2005jb003951.
  • Q. Kang, P. C. Lichtner, and D. Zhang, “An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale,” Water Resour. Res., vol. 43, 2007. DOI: 10.1029/2006wr005551.
  • L. Hao and P. Cheng, “Pore-scale simulation on relative permeabilities of porous media by lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 53, pp. 1908–1913, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.066.
  • E. S. Boek and M. Venturoli, “Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries,” Comput. Math. Appl., vol. 59, pp. 2305–2314, 2010. DOI: 10.1016/j.camwa.2009.08.063.
  • H. Liu, A. J. Valocchi, Q. Kang, and C. Werth, “Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method,” Transp. Porous Media, vol. 99, pp. 555–580, 2013. DOI: 10.1007/s11242-013-0200-8.
  • H. Liu, A. J. Valocchi, C. Werth, Q. Kang, and M. Oostrom, “Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model,” Adv. Water Resour., vol. 73, pp. 144–158, 2014. DOI: 10.1016/j.advwatres.2014.07.010.
  • L. Chen, Q. Kang, B. Carey, and W.-Q. Tao, “Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 75, pp. 483–496, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.074.
  • L. Chen et al., “Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation,” Int. J. Heat Mass Transfer, vol. 85, pp. 935–949, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.035.
  • G. R. Molaeimanesh and M. H. Akbari, “A three-dimensional pore-scale model of the cathode electrode in polymer–electrolyte membrane fuel cell by lattice Boltzmann method,” J. Power Sources, vol. 258, pp. 89–97, 2014. DOI: 10.1016/j.jpowsour.2014.02.027.
  • L. Chen, H.-B. Luan, Y.-L. He, and W.-Q. Tao, “Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields,” Int. J. Therm. Sci., vol. 51, pp. 132–144, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.003.
  • U. R. Salomov, E. Chiavazzo, and P. Asinari, “Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells,” Comput. Math. Appl., vol. 67, pp. 393–411, 2014. DOI: 10.1016/j.camwa.2013.08.006.
  • L. Chen et al., “Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells,” Electrochim. Acta, vol. 158, pp. 175–186, 2015. DOI: 10.1016/j.electacta.2015.01.121.
  • Y. Gao, “Using MRT lattice Boltzmann method to simulate gas flow in simplified catalyst layer for different inlet-outlet pressure ratio,” Int. J. Heat Mass Transfer, vol. 88, pp. 122–132, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.031.
  • CUDA Toolkit Documentation v6.5, NVIDIA CORPORATION.
  • C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, “Multi-GPU implementation of the lattice Boltzmann method,” Comput. Math. Appl., vol. 65, pp. 252–261, 2013. DOI: 10.1016/j.commatsci.2010.10.012.
  • J. Habich, C. Feichtinger, H. Kostler, G. Hager, and G. Wellein, “Performance engineering for the lattice Boltzmann method on GPGPUS: Architectural requirements and performance results,” Comput. Fluids, vol. 80, pp. 276–282, 2013. DOI: 10.1016/j.compfluid.2012.02.013.
  • Q. Ren and C. L. Chan, “Numerical simulation of 2D electrothermal pump by lattice Boltzmann method on GPU,” Numer. Heat Transfer A, vol. 69, pp. 677–693, 2016. DOI: 10.1080/10407782.2015.1090826.
  • Q. Ren and C. L. Chan, “Numerical study of double-diffusive convection in a vertical cavity with Soret and Dufour effects by lattice Boltzmann method on GPU,” Int. J. Heat Mass Transfer, vol. 93, pp. 538–553, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.031.
  • Q. Ren and C. L. Chan, “GPU accelerated numerical study of PCM melting process in an enclosure with internal fins using lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 100, pp. 522–535, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.059.
  • M. Wang, J. Wang, N. Pan, and S. Chen, “Mesoscopic predictions of the effective thermal conductivity for microscale random porous media,” Phys. Rev. E, vol. 75, p. 036702, 2007. DOI: 10.1103/physreve.75.036702.
  • Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Phys. Rev. E, vol. 65, no. 4, p. 046308, 2002. DOI: 10.1103/physreve.65.046308.
  • Q. Ren and C. L. Chan, “Natural convection with an array of solid obstacles in an enclosure by lattice Boltzmann method on a CUDA computation platform,” Int. J. Heat Mass Transfer, vol. 93, pp. 273–285, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.059.
  • P. Jany and A. Bejan, “Scaling theory of melting with natural convection in an enclosure,” Int. J. Heat Mass Transfer, vol. 31, no. 6, pp. 1221–1235, 1988. DOI: 10.1016/0017-9310(88)90065-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.