Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 12
663
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer

& ORCID Icon
Pages 891-903 | Received 13 Sep 2017, Accepted 14 Nov 2017, Published online: 20 Dec 2017

References

  • D. G. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer, vol. 124, pp. 223–241, 2002. DOI: 10.1115/1.1454111.
  • G. Chen, Nanoscale Energy Transport and Conversion. Oxford, UK: Oxford University Press, 2005.
  • Z. Wu and B. Sundén, “On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels,” Renewable Sustainable Energy Rev., vol. 40, pp. 11–27, 2014. DOI: 10.1016/j.rser.2014.07.171.
  • C. H. Amon, S. C. Yao, C. F. Wu, and C. C. Hsieh, “Microelectromechanical system-based evaporative thermal management of high heat flux electronics,” J. Heat Transfer, 127, pp. 66–75, 2005. DOI: 10.1115/1.1839586.
  • C. Li, Z. Wang, P. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small, vol. 4, pp. 1084–1088, 2008. DOI: 10.1002/smll.200700991.
  • T. Hendricks, S. Krishnan, C. Choi, C. H. Chang, and B. Paul, “Enhancement of pool boiling heat transfer using nanostructured surfaces on aluminum and copper,” Int. J. Heat Mass Transfer, vol. 53, pp. 3357–3365, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.025.
  • A. Kalani and S. G. Kandlikar, “Enhanced pool boiling with ethanol at subatmospheric pressures for electronics cooling,” J. Heat Transfer, vol. 135, p. 111002, 2013. DOI: 10.1115/1.4024595.
  • H. S. Ahn, V. Sathyamurthi, and D. Banerjee, “Pool boiling experiments on a nano-structured surface,” IEEE Trans. Compon. Packag. Technol., vol. 32, pp. 156–165, 2009. DOI: 10.1109/tcapt.2009.2013980.
  • W. Wang, S. Huang, and X. Luo, “MD simulation on nano-scale heat transfer mechanism of sub-cooled boiling on nano-structured surface,” Int. J. Heat Mass Transfer, vol. 100, pp. 276–286, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.018.
  • D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” J. Heat Transfer, vol. 133, p. 052902, 2011. DOI: 10.1115/1.4003046.
  • R. Mandel, A. Shooshtari, and M. Ohadi, “Thin-film evaporation on microgrooved heatsinks,” Numer. Heat Transfer, Part A, vol. 71, pp. 111–127, 2017. DOI: 10.1080/10407782.2016.1257300.
  • S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett., vol. 83, pp. 3374–3376, 2003.
  • H. S. Ahn and M. H. Kim, “A review on critical heat flux enhancement with nanofluids and surface modification,” J. Heat Transfer, vol. 134, p. 024001, 2012. DOI: 10.1115/1.4005065.
  • T. K. Tullius and Y. Bayazitoglu, “Analysis of a hybrid nanofluid exposed to radiation,” Numer. Heat Transfer B, vol. 69, pp. 271–286, 2016. DOI: 10.1080/10407790.2015.1104210.
  • J. M. Wu and J. Zhao, “A review of nanofluid heat transfer and critical heat flux enhancement – research gap to engineering application,” Prog. Nucl. Energy, vol. 66, pp. 13–24, 2013. DOI: 10.1016/j.pnucene.2013.03.009.
  • D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, pp. 141–150, 2009. DOI: 10.1016/j.partic.2009.01.007.
  • A. R. Betz, J. Xu, H. Qiu, and D. Attinger, “Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling,” Appl. Phys. Lett., vol. 97, p. 141909, 2010. DOI: 10.1063/1.3485057.
  • H. Jo, H. S. Ahn, S. Kang, and M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,” Int. J. Heat Mass Transfer, vol. 54, pp. 5643–5652, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • H. Ahn and G. Son, “Numerical simulation of liquid film evaporation in circular and square microcavities,” Numer. Heat Transfer A, vol. 67, pp. 934–951, 2015. DOI: 10.1080/10407782.2014.949153.
  • R. F. Gaertner, “Photographic study of nucleate pool boiling on a horizontal surface,’ J. Heat Transfer, vol. 87, pp. 17–29, 1965. DOI: 10.1115/1.3689038.
  • H. S. Ahn, H. J. Jo, S. H. Kang, and M. H. Kim, “Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling,” Appl. Phys. Lett., vol. 98, p. 071908, 2011. DOI: 10.1063/1.3555430.
  • S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” J. Heat Transfer, vol. 123, pp. 1071–1079, 2001. DOI: 10.1115/1.1409265.
  • K. H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Appl. Phys. Lett., vol. 100, p. 241603, 2012. DOI: 10.1063/1.4724190.
  • Y. Zou, J. Cai, X. L. Huai, F. Xin, and Z. Guo, “Molecular dynamics simulation of heat conduction in Si nano-films induced by ultrafast laser heating,” Thin Solid Films, vol. 558, pp. 455–461, 2014. DOI: 10.1016/j.tsf.2014.02.075.
  • C. Y. Ji and Y. Y. Yan, “A molecular dynamics simulation of liquid-vapour-solid system near triple-phase contact line of flow boiling in a microchannel,” Appl. Therm. Eng., vol. 28, pp. 195–202, 2008. DOI: 10.1016/j.applthermaleng.2007.03.029.
  • B. Shi and V. K. Dhir, “Molecular dynamics simulation of the contact angle of liquids on solid surfaces,” J. Chem. Phys., vol. 130, p. 034705, 2009. DOI: 10.1063/1.3055600.
  • A. Hens, R. Agarwal, and G. Biswas, “Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation,” Int. J. Heat Mass Transfer, vol. 71, pp. 303–312, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.032.
  • A. K. M. M. Morshed, T. C. Paul, and J. A. Khan, “Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study,” Appl. Phys. A, vol. 105, pp. 445–451, 2011. DOI: 10.1007/s00339-011-6577-8.
  • H. R. Seyf and Y. Zhang, “Molecular dynamics simulation of normal and explosive boiling on nanostructured surface,” J. Heat Transfer, vol. 135, p. 121503, 2013. DOI: 10.1115/1.4024668.
  • T. Fu, Y. Mao, Y. Tang, Y. Zhang, and W. Yuan, “Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study,” Heat Mass Transfer, vol. 51, pp. 1–10, 2015. DOI: 10.1007/s00231-015-1668-2.
  • R. Diaz and Z. Guo, “A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer,” Heat Mass Transfer, vol. 53, pp. 1061–1071, 2017. DOI: 10.1007/s00231-016-1878-2.
  • S. Maruyama and T. Kimura, “A study on thermal resistance over a solid-liquid interface by the molecular dynamics method.” Therm. Sci. Eng., vol. 7, pp. 63–68, 1999. DOI: 10.1016/j.ijthermalsci.2007.01.009.
  • Y. Mao and Y. Zhang, “Molecular dynamics simulation on rapid boiling of water on a hot copper plate,” Appl. Therm. Eng., vol. 62, pp. 607–612, 2014. DOI: 10.1016/j.applthermaleng.2013.10.032.
  • B. Dünweg and W. Paul, “Brownian dynamics simulations without Gaussian random numbers,” Int. J. Modern Phys. C, vol. 2, pp. 817–827, 1991. DOI: 10.1142/s0129183191001037.
  • M. Isaiev, S. Burian, L. Bulavin, M. Gradeck, F. Lemoine, and K. Termentzidis, “Efficient tuning of potential parameters for liquid–solid interactions,” Mol. Simul., vol. 42, pp. 910–915, 2016. DOI: 10.1080/08927022.2015.1105372.
  • S. Plimpton, “Fast parallel algorithms for short-range molecular-dynamics,” J. Comput. Phys., vol. 117, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD – visual molecular dynamics,” J. Mol. Graphics, vol. 14, pp. 33–38. DOI: 10.1016/0263-7855(96)00018-5.
  • R. Gilgen, R. Kleinrahm, and W. Wagner, “Measurement and correlation of the (pressure, density, temperature) relation of argon II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve,” J. Chem. Thermodyn., vol. 26, pp. 399–413, 1994. DOI: 10.1006/jcht.1994.1049.
  • M. Srivastava, “Image processing and analysis of vapor bubbles nucleated in thin liquid film boiling,” Masters thesis, North Carolina State University, Raleigh, NC, 2015.
  • S. C. Maroo and J. N. Chung, “Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics,” J. Colloid Interface Sci., vol. 328, pp. 134–146, 2008. DOI: 10.1016/j.jcis.2008.09.018.
  • W. R. Gamble and J. H. Lienhard, “An upper bound for the critical boiling heat flux,” J. Heat Transfer, vol. 111, pp. 815–818, 1989. DOI: 10.1115/1.3250759.
  • C. C. Hsu and P. H. Chen, “Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,” Int. J. Heat Mass Transfer, vol. 55, pp. 3713–3719, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.003.
  • N. Khan, D. Pinjala, and K. C. Toh, “Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: a review,” presented at the Proceedings of 6th Electronics Packaging Technology Conference, pp. 273–280, Singapore, Singapore, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.