Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 12
137
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Radiation effects on turbulent natural convection in optically thick participating fluids using direct numerical simulation

, &
Pages 904-920 | Received 04 Sep 2017, Accepted 14 Nov 2017, Published online: 27 Dec 2017

References

  • T. H. Song, and R. Viskanta, “Interaction of radiation with turbulence - Application to a combustion system,” J. Thermophys. Heat Transfer., vol. 1, pp. 56–62, 1987. DOI: 10.2514/3.7.
  • E. M. Orbegoso, L. F. Figueira da Silva, and R. Serfaty, “Comparative study of thermal radiation properties models in turbulent non-premixed sooting combustion,” Numer. Heat Transfer, Part A., vol. 69, pp. 166–179, 2016. DOI: 10.1080/10407782.2015.1052318.
  • P. S. Cumber, “Efficient modeling of turbulence-radiation interaction in subsonic hydrogen jet flames,” Numer. Heat Transfer, Part B., vol. 63, pp. 85–114, 2013. DOI: 10.1080/10407790.2013.740395.
  • T. Fusegi, and B. Farouk, “Laminar and turbulent natural convection-radiation interactions in a square enclosure filled with a nongray gas,” Numer. Heat Transfer, Part A., vol. 15, pp. 303–322, 1989. DOI: 10.1080/10407788908944690.
  • C. Mesyngier, and B. Farouk, “Turbulent natural convection-nongray gas radiation analysis in a square enclosure,” Numer. Heat Transfer, Part A., vol. 29, pp. 671–687, 1996. DOI: 10.1080/10407789608913813.
  • G. Groetzbach, “Direct numerical simulation of laminar and turbulent Benard convection,” J. Fluid Mech., vol. 119, pp. 27–53, 1982.
  • G. Groetzbach, “Spatial resolution requirements for direct numerical simulation of the Rayleigh-Benard convection,” J. Comput. Phys., vol. 49, pp. 241–264, 1983.
  • R. M. Kerr, “Rayleigh number scaling in numerical convection,” J. Fluid Mech., vol. 310, pp. 139–179, 1996. DOI: 10.1017/s0022112096001760.
  • D. E. Fitzjarrald, “An experimental study of turbulent convection in air,” J. Fluid Mech., vol. 73, pp. 693–719, 1976. DOI: 10.1017/s0022112076001572.
  • J. W. Deardorff, and G. E. Willis, “Investigation of turbulent thermal convection between horizontal plates,” J. Fluid Mech., vol. 28, pp. 675–704, 1967. DOI: 10.1017/s0022112067002393.
  • S. Amraqui, A. Mezrhab, and C. Abid, “Computation of coupled surface radiation and natural convection in an inclined < <T>> form cavity,” Energy Convers. Manage., vol. 52, pp. 1166–1174, 2011. DOI: 10.1016/j.enconman.2010.09.011.
  • G. Colomer, M. Costa, R. Cnsul, and A. Oliva, “Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transfer, vol. 47, pp. 257–269, 2004. DOI: 10.1016/s0017-9310(03)00387-9.
  • K. Lari, M. Baneshi, S. A. G. Nassab, A. Komiya, and S. Maruyama, “Numerical study of non-gray radiation and natural convection using the full-spectrum k-Distribution method,” Numer. Heat Transfer, Part A, vol. 61, pp. 61–84, 2012. DOI: 10.1080/10407782.2012.638504.
  • A. Gupta, M. F. Modest, and D. C. Haworth, “Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow,” J. Heat Transfer, vol. 131, 061704, 2009. DOI: 10.1115/1.3085875.
  • M. F. Modest, Radiative Heat Transfer, 2nd ed. New York, NY: Academic Press, 2003.
  • B. Zheng, C. X. Lin, and M. A. Ebadian, “Combined turbulent forced convection and thermal radiation in a curved pipe with uniform wall temperature,” Numer. Heat Transfer, Part A, vol. 44, pp. 149–167, 2003. DOI: 10.1080/713838193.
  • P. J. Coelho, “Numerical simulation of the interaction between turbulence and radiation in reactive flows,” Prog. Energy Combust. Sci., vol. 33, pp. 311–383, 2007. DOI: 10.1016/j.pecs.2006.11.002.
  • Y. C. Wang, J. Yang, Y. Pan, X. J. Zhang, and Y. F. Yu, “Turbulent natural convection heat transfer with thermal radiation in a rectangular enclosure partially filled with porous medium,” Numer. Heat Transfer, Part A, vol. 70, pp. 639–649, 2016. DOI: 10.1080/10407782.2016.1193346.
  • A. Sakurai, S. Maruyama, K. Matsubara, T. Miura, and M. Behnia, “An efficient method for radiative heat transfer applied to a turbulent channel flow,” J. Heat Transfer, vol. 132, 023507, 2009. DOI: 10.1115/1.4000240.
  • A. Sakurai, R. Kanbayashi, K. Matsubara, and S. Maruyama, “Radiative heat transfer analysis in a turbulent natural convection obtained from direct numerical simulation,” J. Therm. Sci. Technol., vol. 6, pp. 449–462, 2011. DOI: 10.1299/jtst.6.449.
  • A. Sakurai, K. Matsubara, K. Takakuwa, and R. Kanbayashi, “Radiation effects on mixed turbulent natural and forced convection in a horizontal channel using direct numerical simulation,” Int. J. Heat Mass Transfer, vol. 55, pp. 2539–2548, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.01.006.
  • T. Kogawa, J. Okajima, A. Sakurai, A. Komiya, and S. Maruyama, “Influence of radiation effect on turbulent natural convection in cubic cavity at normal temperature atmospheric gas,” Int. J. Heat Mass Transfer, vol. 104, pp. 456–466, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.059.
  • J. Kim, and P. Moin, “Application of a fractional-step method to incompressible Navier-Stokes equations,” J. Comput. Phys., vol. 59, pp. 308–323, 1985. DOI: 10.1016/0021-9991(85)90148-2.
  • S. Maruyama, A. Sakurai, and A. Komiya, “Discrete ordinates radiation element method for radiative heat transfer in three-dimensional participating media,” Numer. Heat Transfer, Part B, vol. 51, pp. 121–140, 2007. DOI: 10.1080/10407790600878726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.