Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 72, 2017 - Issue 12
255
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on supercritical turbulent heat transfer of copper/n-decane nanofluid inside a miniature tube

, ORCID Icon, &
Pages 921-935 | Received 15 Jul 2017, Accepted 17 Nov 2017, Published online: 20 Dec 2017

References

  • H. Huang, L. J. Spadaccini, and D. R. Sobel, “Fuel-cooled thermal management for advanced aero engines,” J. Eng. Gas. Turbines Power-Trans. ASME, vol. 126, pp. 284–293, 2004. DOI: 10.1115/1.1689361.
  • P. Caisso, A. Souchier, C. Rothmund, P. Alliot, C. Bonhomme, W. Zhinner, R. Parsley, T. Neill, S. Forde, R. Starke, et al., “A liquid propulsion panorama,” Acta Astronaut., vol. 65, pp. 1723–1737, 2009. DOI: 10.1016/j.actaastro.2009.04.020.
  • H. Huang, D. R. Sobel, and L. J. Spadaccini, “Endothermic heat-sink of hydrocarbon fuels for scramjet cooling,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2002-3871, Indianapolis, Indiana, 2002.
  • A. Chen and L. Dang, “Characterization of supercritical JP-7’s Heat transfer and coking properties,” 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0005, Reno, NV, 2002.
  • F. Zhong, X. Fan, G. Yu, J. Li, and C. J. Sung, “Heat transfer of aviation kerosene at supercritical conditions,” J. Thermophys. Heat Transfer, vol. 23, pp. 543–550, 2009. DOI: 10.2514/1.41619.
  • W. Zhou, Z. Jia, J. Qin, W. Bao, and B. Yu, “Experimental study on effect of pressure on heat sink of n-decane,” Chem. Eng. J., vol. 243, pp. 127–136, 2014. DOI: 10.1016/j.cej.2013.12.081.
  • Y. X. Hua, Y. Z. Wang, and H. Meng, “A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube,” J. Supercrit. Fluids, vol. 52, pp. 36–46, 2010. DOI: 10.1016/j.supflu.2009.12.003.
  • B. Ruan and H. Meng, “Supercritical heat transfer of cryogenic-propellant methane in rectangular engine cooling channels,” J. Thermophys. Heat Transfer, vol. 26, pp. 313–321, 2012. DOI: 10.2514/1.t3670.
  • A. Urbano and F. Nasuti, “Parametric analysis of heat transfer to supercritical-pressure methane,” J. Thermophys. Heat Transfer, vol. 26, pp. 450–463, 2012. DOI: 10.2514/1.t3840.
  • Y. Z. Wang, Y. X. Hua, and H. Meng, “Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane,” J. Thermophys. Heat Transfer, vol. 24, pp. 490–500, 2012. DOI: 10.2514/1.46769.
  • K. Xu, L. Tang, and H. Meng, “Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes,” Int. J. Heat Mass Transfer, vol. 84, pp. 346–358, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.041.
  • C. Carpenter, S. Verma, and J. S. Kapat, “Numerical study of enhancement of regenerative cooling using ribs,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013-3996, San Jose, CA, 2013.
  • M. Pizzarelli, F. Nasuti, M. Onofri, P. Roncioni, R. Votta, and F. Battista, “Heat transfer modeling for supercritical methane flowing in rocket engine cooling channels,” Appl. Therm. Eng., vol. 75, pp. 600–607, 2015. DOI: 10.1016/j.applthermaleng.2014.10.008.
  • H. Wang, Y. Luo, H. Gu, H. Li, T. Chen, J. Chen, and H. Wu, “Experimental investigation on heat transfer and pressure drop of kerosene at supercritical pressure in square and circular tube with artificial roughness,” Exp. Therm. Fluid Sci., vol. 42, pp. 16–24, 2012. DOI: 10.1016/j.expthermflusci.2012.03.009.
  • Y. Gan, Y. S. Lim, and L. Qiao, “Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations,” Combust. Flame, vol. 159, pp. 1732–1740, 2012. DOI: 10.1016/j.combustflame.2011.12.008.
  • J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, “The viscosity of nanofluids: A review of the theoretical, empirical, and numerical models,” Heat Transfer Eng., vol. 37, pp. 387–421, 2015. DOI: 10.1080/01457632.2015.1057447.
  • W. Yu and D. M. France, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng., vol. 29, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transfer, vol. 52, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • R. Taylor, S. Coulombe, T. Otanicar, and P. Phelan, “Small particles, big impacts: A review of the diverse applications of nanofluids,” J. Appl. Phys., vol. 113, pp. 11301, 2013. DOI: 10.1063/1.4754271.
  • J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski, “Thermal transport in nanofluids,” Annu. Rev. Mater. Res., vol. 34, pp. 219–246, 2004. DOI: 10.1146/annurev.matsci.34.052803.090621.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids-a review,” Heat Transfer Eng., vol. 27, pp. 319, 2006.
  • K. Kannaiyan, K. Anoop, and R. Sadr, “Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel,” J. Energy Resour. Technol.-Trans. ASME, vol. 139, pp. 032201, 2017. DOI: 10.1115/1.4034858.
  • F. Shariatmadar and S. Pakdehi, “Synthesis and characterization of aviation turbine kerosene nanofluid fuel containing boron nanoparticles,” Energy Fuels, vol. 30, pp. 7755–7762, 2016. DOI: 10.1021/acs.energyfuels.6b01370.
  • D. Agarwal, A. Vaidyanathan, and S. Kumar, “Experimental investigation on thermal performance of kerosene–graphene nanofluid,” Exp. Therm. Fluid Sci., vol. 71, pp. 126–137, 2016. DOI: 10.1016/j.expthermflusci.2015.10.028.
  • B. Ruan, X. Gao, and H. Meng, “Numerical modeling of turbulent heat transfer of a nanofluid at supercritical pressure,” Appl. Therm. Eng., vol. 113, pp. 994–1003, 2017. DOI: 10.1016/j.applthermaleng.2016.11.092.
  • K. Khanfar, K. Vafai, and M. Lightstone, “Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, pp. 3639–3653, 2003. DOI: 10.1016/s0017-9310(03)00156-x.
  • P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, “Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,” Int. J. Therm. Sci., vol. 48, pp. 290–302, 2009. DOI: 10.1016/j.ijthermalsci.2008.01.001.
  • A. Kamyar, R. Saidur, and M. Hasanuzzaman, “Application of computational fluid dynamics (CFD) for nanofluids,” Int. J. Heat Mass Transfer, vol. 55, pp. 4104–4115, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.052.
  • Fluent Inc., “Fluent 6.3 User Guide,” NH, USA: Fluent Inc., 2006.
  • B. Ruan, H. Meng, and V. Yang, “Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures,” Int. J. Heat Mass Transfer, vol. 69, pp. 455–463, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.045.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transfer, vol. 11, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, pp. 3701–3707, 2000. DOI: 10.1016/s0017-9310(99)00369-5.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transfer, vol. 128, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, pp. 571, 1952. DOI: 10.1063/1.1700493.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • T. A. Ward, J. S. Ervin, S. Zabarnick, and L. Shafer, “Pressure effects on flowing mildly-cracked n-decane,” J. Propul. Power, vol. 21, pp. 344–355, 2005. DOI: 10.2514/1.6863.
  • U. Rea, T. McKrell, L. Hu, and J. Buongiorno, “Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids,” Int. J. Heat Mass Transfer, vol. 52, pp. 2042–2048, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.10.025.
  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” ASME J. Heat Transfer, vol. 125, pp. 151–155, 2003. DOI: 10.1115/1.1532008.
  • K. Xu, B. Ruan, and H. Meng, “A thermal performance factor for evaluation of active engine cooling with asymmetric heating,” Appl. Therm. Eng., vol. 73, pp. 351–356, 2014. DOI: 10.1016/j.applthermaleng.2014.07.066.
  • M. Pizzarelli, A. Urbano, and F. Nasuti, “Numerical analysis of deterioration in heat transfer to near-critical rocket propellants,” Numer. Heat Tranfer Part A Appl., Vol. 57, pp. 297–314, 2010. DOI: 10.1080/10407780903583016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.