Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 1
403
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

CFD models comparative study on nanofluids subcooled flow boiling in a vertical pipe

, , &
Pages 55-74 | Received 31 Jul 2017, Accepted 11 Dec 2017, Published online: 16 Jan 2018

References

  • S. Sivasankaran and K. Narrein, “Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium,” Int. Commun. Heat Mass Transfer, vol. 75, pp. 86–91, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.016.
  • K. Narrein, S. Sivasankaran, and P. Ganesan, “Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel,” Numer. Heat Transfer Part A, vol. 69, no. 8, pp. 921–930, 2016. DOI: 10.1080/10407782.2015.1090834.
  • K. Narrein, S. Sivasankaran, and P. Ganesan, “Two-phase analysis of helical microchannel heat sink using nanofluids,” Numer. Heat Transfer Part A, vol. 68, pp. 1266–1279, 2015. DOI: 10.1080/10407782.2015.1032017.
  • S. Sivasankaran and K. L. Pan, “Natural convection of nanofluids in a cavity with non-uniform temperature distributions on side walls,” Numer. Heat Transfer Part A, vol. 65, pp. 247–268, 2014. DOI: 10.1080/10407782.2013.825510.
  • S. Sivasankaran, M. A. Mansour, A. M. Rashad, and M. Bhuvaneswari, “MHD mixed convection of Cu–water nanofluid in a two-sided lid-driven porous cavity with a partial slip,” Numer. Heat Transfer Part A, vol. 70, no. 12, pp. 1356–1370, 2016. DOI: 10.1080/10407782.2016.1243957.
  • A. M. Rashad, S. Sivasankaran, M. A. Mansour, and M. Bhuvaneswari, “Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating,” Numer. Heat Transfer, Part A, vol. 71, no. 12, pp. 1223–1234, 2017. DOI: 10.1080/10407782.2017.1347000.
  • E. Abedini, A. Behzadmehr, S. Sarvari, and S. Mansouri, “Numerical investigation of subcooled flow boiling of a nanofluid,” Int. J. Therm. Sci., vol. 64, pp. 232–239, 2013.
  • E. Abedini, A. Behzadmehr, H. Rajabnia, S. Sarvari, and S. Mansouri, “Experimental investigation and comparison of subcooled flow boiling of TiO2 nanofluid in a vertical and horizontal tube,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 227, no. 8, pp. 1742–1753, 2013.
  • M. Sarafraz and F. Hormozi, “Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus,” Exp. Therm. Fluid Sci., vol. 52, pp. 205–214, 2014. DOI: 10.1016/j.expthermflusci.2013.09.012.
  • S. J. Kim, T. McKrell, J. Buongiorno, and L.-W. Hu, “Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure,” Nucl. Eng. Des., vol. 240, no. 5, pp. 1186–1194, 2010. DOI: 10.1016/j.nucengdes.2010.01.020.
  • M. Sarafraz, F. Hormozi, and M. Kamalgharibi, “Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids,” Heat Mass Transfer, vol. 50, no. 9, pp. 1237–1249, 2014. DOI: 10.1007/s00231-014-1336-y.
  • M. M. Sarafraz and F. Hormozi, “Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids,” Period. Polytech. Chem. Eng., vol. 58, no. 1, pp. 37–46, 2013. DOI: 10.3311/ppch.2206.
  • P. Vassallo, R. Kumar, and S. D’Amico, “Pool boiling heat transfer experiments in silica–water nano-fluids,” Int. J. Heat Mass Transfer, vol. 47, no. 2, pp. 407–411, 2004. DOI: 10.1016/s0017-9310(03)00361-2.
  • S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer, vol. 46, no. 5, pp. 851–862, 2003. DOI: 10.1016/s0017-9310(02)00348-4.
  • A. Suriyawong and S. Wongwises, “Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 992–999, 2010. DOI: 10.1016/j.expthermflusci.2010.03.002.
  • D. Wen and Y. Ding, “Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids,” J. Nanopart. Res., vol. 7, no. 2–3, pp. 265–274, 2005. DOI: 10.1007/s11051-005-3478-9.
  • L. Lun-Chun and L. Zhen-Hua, “Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticle-suspensions,” Heat Mass Transfer, vol. 45, no. 1, pp. 1–9, 2008. DOI: 10.1007/s00231-008-0397-1.
  • Z.-H. Liu, X.-F. Yang, and J.-G. Xiong, “Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures,” Int. J. Therm. Sci., vol. 49, no. 7, pp. 1156–1164, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.023.
  • S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S. M. You, “Pool boiling characteristics of low concentration nanofluids,” Int. J. Heat Mass Transfer, vol. 53, no. 5, pp. 972–981, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.018.
  • S. Kim, I. C. Bang, J. Buongiorno, and L. Hu, “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,” Appl. Phys. Lett., vol. 89, no. 15, pp. 153–107, 2006. DOI: 10.1063/1.2360892.
  • S. Kim, I. C. Bang, J. Buongiorno, and L. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transfer, vol. 50, no. 19, pp. 4105–4116, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.002.
  • J. Barber, D. Brutin, and L. Tadrist, “A review on boiling heat transfer enhancement with nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–16, 2011.
  • S. Vafaei and T. Borca-Tasciuc, “Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition,” Chem. Eng. Res. Des., vol. 92, no. 5, 842–856, 2014. DOI: 10.1016/j.cherd.2013.08.007.
  • X. Li, K. Li, J. Tu, and J. Buongiorno, “On two-fluid modeling of nucleate boiling of dilute nanofluids,” Int. J. Heat Mass Transfer, vol. 69, pp. 443–450, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.037.
  • G. Yeoh, S. Vahaji, S. Cheung, and J. Tu, “Modeling subcooled flow boiling in vertical channels at low pressures–Part 2: evaluation of mechanistic approach,” Int. J. Heat Mass Transfer, vol. 75, pp. 754–768, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.017.
  • E. Krepper, B. Končar, and Y. Egorov, “CFD modelling of subcooled boiling – concept, validation and application to fuel assembly design,” Nucl. Eng. Des., vol. 237, no. 7, pp. 716–731, 2007. DOI: 10.1016/j.nucengdes.2006.10.023.
  • E. Chen, Y. Li, X. Cheng, and L. Wang, “Modeling of low-pressure subcooled boiling flow of water via the homogeneous MUSIG approach,” Nucl. Eng. Des., vol. 239, no. 10, pp. 1733–1743, 2009. DOI: 10.1016/j.nucengdes.2009.06.005.
  • P. Ganesan, I. Behroyan, S. He, S. Sivasankaran, and S. C. Sandaran, “Turbulent forced convection of Cu–water nanofluid in a heated tube: improvement of the two-phase model,” Numer. Heat Transfer Part A, vol. 69, pp. 401–420, 2015. DOI: 10.1080/10407782.2015.1081019.
  • W. Yu and S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” J. Nanopart. Res., vol. 5, nos. 1–2, pp. 167–171, 2003. DOI: 10.1023/a:1024438603801.
  • S. E. B. Maıga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstruct., vol. 35, no. 3, pp. 543–557, 2004. DOI: 10.1016/j.spmi.2003.09.012.
  • A. Tomiyama, “Struggle with computational bubble dynamics,” Multiphase Sci. Technol., vol. 10, no. 4, pp. 369–405, 1998.
  • A. Fluent, Ansys Fluent 14.0 User Guide. ANSYS Inc, USA, 2011.
  • O. Zeitoun and M. Shoukri, “Bubble behavior and mean diameter in subcooled flow boiling,” J. Heat Transfer, vol. 118, no. 1, pp. 110–116, 1996. DOI: 10.1115/1.2824023.
  • B. Končar, I. Kljenak, and B. Mavko, “Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure,” Int. J. Heat Mass Transfer, vol. 47, no. 6, pp. 1499–1513, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.09.021.
  • B. E. Launder and D. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974. DOI: 10.1016/b978-0-08-030937-8.50016-7.
  • A. Troshko and Y. Hassan, “A two-equation turbulence model of turbulent bubbly flows,” Int. J. Multiphase Flow, vol. 27, no. 11, pp. 1965–2000, 2001. DOI: 10.1016/s0301-9322(01)00043-x.
  • Y. Sato, M. Sadatomi, and K. Sekoguchi, “Momentum and heat transfer in two-phase bubble flow–I. Theory,” Int. J. Multiphase Flow, vol. 7, no. 2, pp. 167–177, 1981. DOI: 10.1016/0301-9322(81)90003-3.
  • R. Cole, “A photographic study of pool boiling in the region of the critical heat flux,” AIChE J., vol. 6, no. 4, pp. 533–538, 1960. DOI: 10.1002/aic.690060405.
  • V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Therm. Eng., vol. 29, no. 17, pp. 3632–3642, 2009. DOI: 10.1016/j.applthermaleng.2009.06.019.
  • I. Behroyan, P. Ganesan, S. He, and S. Sivasankaran, “Turbulent forced convection of Cu–water nanofluid: CFD model comparison,” Int. Commun. Heat Mass Transfer, vol. 67, pp. 163–172, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.07.014.
  • I. Behroyan, S. M. Vanaki, P. Ganesan, and R. Saidur, “A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube,” Int. Commun. Heat Mass Transfer, vol. 70, pp. 27–37, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.11.001.
  • A. Li and G. Ahmadi, “Dispersion and deposition of spherical particles from point sources in a turbulent channel flow,” Aerosol Sci. Technol., vol. 16, no. 4, pp. 209–226, 1992. DOI: 10.1080/02786829208959550.
  • P. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech., vol. 22, no. 2, pp. 385–400, 1965. DOI: 10.1017/s0022112065000824.
  • L. Talbot, R. Cheng, R. Schefer, and D. Willis, “Thermophoresis of particles in a heated boundary layer,” J. Fluid Mech., vol. 101, no. 4, pp. 737–758, 1980. DOI: 10.1017/s0022112080001905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.