Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 3
385
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of heat transfer coefficient of forced-air cooling and its experimental validation in controlled processing of forgings

ORCID Icon &
Pages 163-176 | Received 23 Sep 2017, Accepted 20 Dec 2017, Published online: 16 Jan 2018

References

  • R. T. Morelli and S. L. Semiatin, “Heat treatment practices,” in Forging Handbook, T. G. Byrer, S. L. Semiatin, and D. C. Vollmer, Eds. Cleveland, OH: Forging Industry Association, American Society of Metals, 1985, Chap. 4.
  • C. Wang, M. Larsson, J. Yan, and J. Dahl, “CO2 emission reduction in the steel industry by using emission trading programs,” Int. J. Green Energy, vol. 4, no. 5, pp. 505–518, 2007. DOI: 10.1080/15435070701583094.
  • A. Hasanbeigi, M. Arens, and L. Price, “Alternative emerging iron making technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review,” Renew. Sust. Energ. Rev., vol. 33, pp. 645–658, 2014. DOI: 10.1016/j.rser.2014.02.031.
  • S. K. Dhua and S. K. Sen, “Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates,” Mat. Sci. Eng. A, vol. 528, pp. 6356–6365, 2011. DOI: 10.1016/j.msea.2011.04.084.
  • F. Z. Bu, X. M. Wang, L. Chen, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Influence of cooling rate on the precipitation behavior in Ti–Nb–Mo microalloyed steels during continuous cooling and relationship to strength,” Mater. Charact., vol. 102, pp. 146–155, 2015. DOI: 10.1016/j.matchar.2015.03.005.
  • M. Gomez, L. Rancel, E. Escudero, and S. F. Medina, “Phase transformation under continuous cooling conditions in medium carbon microalloyed steels,” J. Mater. Sci. Technol., vol. 30, no. 5, pp. 511–516, 2014. DOI: 10.1016/j.jmst.2014.03.015.
  • M. Mukherjee, U. Prahl, and W. Bleck, “Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened ferritic–pearlitic steels,” Acta Mater., vol. 71, pp. 234–254, 2014. DOI: 10.1016/j.actamat.2014.03.016.
  • A. Grajcar, “Thermodynamic analysis of precipitation processes in Nb–Ti microalloyed Si–Al TRIP steel,” J. Therm. Anal. Calorim., vol. 118, pp. 1011–1020, 2014. DOI: 10.1007/s10973-014-3801-8.
  • M. Opiela, “Effect of thermomechanical processing on the microstructure and mechanical properties of Nb–Ti–V microalloyed steel,” J. Mater. Eng. Perform., vol. 23, no. 9, pp. 3379–3388, 2014. DOI: 10.1007/s11665-014-1111-8.
  • T. Astarita, G. Cardone, G. M. Carlomagno, and C. Meola, “A survey on infrared thermography for convective heat transfer measurements,” Opt. Laser Technol., vol. 32, pp. 593–610, 2000. DOI: 10.1016/s0030-3992(00)00086-4.
  • D. S. Martínez, F. Illán, J. P. Solano, and A. Viedma, “Embedded thermocouple wall temperature measurement technique for scraped surface heat exchangers,” Appl. Therm. Eng., vol. 114, pp. 793–801, 2017. DOI: 10.1016/j.applthermaleng.2016.12.039.
  • S. W. Indermuehle and R. B. Peterson, “A phase-sensitive technique for thermal characterization of dielectric thin films,” J. Heat Trans-T. ASME, vol. 3, pp. 528–536, 1999. DOI: 10.1115/1.2826013.
  • P. M. Kodzwa and J. K. Eaton, “Heat transfer coefficient measurements on the film-cooled pressure surface of a transonic airfoil,” J. Turbomach., vol. 135, pp. 1–16, 2013. DOI: 10.1115/1.4023620.
  • Z. Malinowski, A. Cebo-Rudnicka, T. Telejko, B. Hadala, and A. Szajding, “Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray,” Inverse Probl. Sci. Eng., vol. 23, no. 3, pp. 518–556, 2015. DOI: 10.1080/17415977.2014.923417.
  • D. S. Martínez, J. P. Solano, F. Illán, and A. Viedma, “Analysis of heat transfer phenomena during ice slurry production in scraped surface plate heat exchangers,” Int. J. Refrig., vol. 48, pp. 221–232, 2014. DOI: 10.1016/j.ijrefrig.2014.07.020.
  • A. Bejan, M. Alalaimi, S. Lorente, A. S. Sabau, and J. W. Klett, “Counterflow heat exchanger with core and plenums at both ends,” Int. J. Heat Mass Transfer, vol. 99, pp. 622–629, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.117.
  • M. S. El-Genk and H. H. Saber, “Determination of operation envelops for closed, two-phase thermosyphons,” Int. J. Heat Mass Transfer, vol. 42, no. 5, pp. 889–903, 1999. DOI: 10.1016/s0017-9310(98)00212-9.
  • H. Khalkhali, A. Faghri, and Z. J. Zou, “Entropy generation in a heat pipe system,” Appl. Therm. Eng., vol. 19, no. 10, pp. 1027–1043, 1999. DOI: 10.1016/s1359-4311(98)00089-1.
  • G. P. Redding, A. Yang, Y. M. Shim, J. Olatunji, and A. East, “A review of the use and design of produce simulators for horticultural forced-air cooling studies,” J. Food Eng., vol. 190, pp. 80–93, 2016. DOI: 10.1016/j.jfoodeng.2016.06.014.
  • J. O’Sullivan, M. J. Ferrua, R. Love, P. Verboven, B. Nicolai, and A. East, “Modelling the forced-air cooling mechanisms and performance of polylined horticultural produce,” Postharvest Biol. Technol., vol. 120, pp. 23–35, 2016. DOI: 10.1016/j.postharvbio.2016.05.008.
  • S. Sahin, S. K. Sastry, and L. Bayindirli, “The determination of convective heat transfer coefficient during frying,” J. Food Eng., vol. 39, no. 3, pp. 307–311, 1999. DOI: 10.1016/s0260-8774(98)00171-x.
  • C. F. Weber, “Analysis and solution of the ill-posed inverse heat conduction problem,” Int. J. Heat Mass Transfer, vol. 24, pp. 1783–1792, 1981. DOI: 10.1016/0017-9310(81)90144-7.
  • N. V. Biba, S. A. Stebunov, A. V. Ovchinnikov, and V. P. Shmelev, “Experience in simulation for predicting the structure of die forgings,” Met. Sci. Heat Treat., vol. 48, pp. 7–8, 2006. DOI: 10.1007/s11041-006-0093-z.
  • G. Cusatis, R. Rezakhani, and E. A. Schauffert, “Discontinuous cell method (DCM) for the simulation of cohesive fracture and fragmentation of continuous media,” Eng. Fract. Mech., vol. 170, pp. 1–22, 2017. DOI: 10.1016/j.engfracmech.2016.11.026.
  • H. Adrian, J. Augustyn-Pieniążek, J. Franek, M. Osika, and P. Marynowski, “Analysis of the heat transfer coefficient of selected quenching oils,” Metallurgist, vol. 80, pp. 267–273, 2013 ( in Polish).
  • N. Al-Khalidy, “On the solution of parabolic and hiperbolic inverse heat conduction problems,” Int. J. Heat Mass Transfer, vol. 41, pp. 3731–3740, 1998. DOI: 10.1016/s0017-9310(98)00102-1.
  • N. Al-Khalidy, “Analysis of boundary inverse heat conduction problem using space marching with Sawitzky–Golay digital filter,” Int. Commun. Heat Mass, vol. 26, pp. 199–208, 1999. DOI: 10.1016/s0735-1933(99)00006-8.
  • R. F. Harvey, “Development, principles and applications of interrupted quench hardening,” J. Franklin Inst., vol. 255, no. 2, pp. 93–98, 1953. DOI: 10.1016/0016-0032(53)90770-4.
  • X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, “Influence of accelerated cooling on microstructure and mechanical properties of C–Mn steel,” Mat. Sci. Technol., vol. 18, pp. 47–53, 2002. DOI: 10.1179/026708301125000203.
  • P. Kučera and E. Mazancova, “Mechanical and structural response of AISI 4135 steel after controlled cooling process,” Metalurgija, vol. 55, no. 2, pp. 165–168, 2016.
  • P. Skubisz, J. Sinczak, T. Skowronek, and M. Ruminski, Selection of direct cooling conditions for automotive lever made of microalloy steel,” Arch. Civ. Mech. Eng., vol. 12, no. 4, pp. 418–426, 2012. DOI: 10.1016/j.acme.2012.08.004.
  • H. Montazeri and B. Blocken, “New generalized expressions for forced convective heat transfer coefficients at building facades and roofs,” Build. Environ., vol. 119, pp. 153–168, 2017. DOI: 10.1016/j.buildenv.2017.04.012.
  • L. Hong, B. Wang, S. Feng, Z. Yang, Y. Yu, W. Peng, and J. Zhang, “A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system,” Appl. Therm. Eng., vol. 116, pp. 766–776, 2017. DOI: 10.1016/j.applthermaleng.2017.02.025.
  • C. Li and K. Ito, “Numerical and experimental estimation of convective heat transfer coefficient of human body under strong forced convective flow,” J. Wind Eng. Ind. Aerod., vol. 126, pp. 107–117, 2014. DOI: 10.1016/j.jweia.2014.01.003.
  • H. Li, L. Rong, C. Zong, and G. Zhang, “A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow,” Biosyst. Eng., vol. 150, pp. 151–159, 2016.
  • T. Defraeye, R. Lambrecht, M. A. Delele, A. Ambaw, U. L. Opara, P. Cronjé, P. Verboven, and B. Nicolai, “Forced-convective cooling of citrus fruit: Cooling conditions and energy consumption in relation to package design,” J. Food Eng., vol. 121, pp. 118–127, 2014. DOI: 10.1016/j.jfoodeng.2013.08.021.
  • F. Jiang, T. Zhang, and L. Yan, “Estimation of temperature-dependent heat transfer coefficients in near-dry cutting,” Int. J. Adv. Manuf. Technol., vol. 86, pp. 1207–1218, 2016. DOI: 10.1007/s00170-015-8293-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.