Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 3
199
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation for the effect of vaporization intensity in membrane on the performance of PEM fuel cell

&
Pages 177-194 | Received 18 Oct 2017, Accepted 20 Dec 2017, Published online: 16 Jan 2018

References

  • V. L. Vinodhan and K. S. Rajan, “Fine-tuning width and aspect ratio of an improved microchannel heat sink for energy-efficient thermal management,” Energ. Convers. Manage., vol. 105, pp. 986–994, 2015. DOI: 10.1016/j.enconman.2015.08.068.
  • G. S. Avcioglu, B. Ficicilar, A. Bayrakceken, and I. Eroglu, “High performance PEM fuel cell catalyst layers with hydrophobic channels,” Int. J. Hydrogen Energy., vol. 40, pp. 7720–7731, 2015. DOI: 10.1016/j.ijhydene.2015.02.004.
  • S. Litster, J. G. Pharoah, G. McLeana, and N. Djilali, “Computational analysis of heat and mass transfer in a micro-structured PEMFC cathode,” J. Power Sources., vol. 156, pp. 334–344, 2006. DOI: 10.1016/j.jpowsour.2005.05.064.
  • M. Paquin and L. G. Fre´ chette, “Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells,” J. Power Sources, vol. 180, pp. 440–451, 2008. DOI: 10.1016/j.jpowsour.2008.02.012.
  • T. F. Cao, Y. T. Mu, J. Ding, H. Lin, Y. L. He, and W. Q. Tao, “Modeling the temperature distribution and performance of a PEM fuel cell with thermal contact resistance,” Int. J. Heat Mass Transfer., vol. 87, pp. 544–556, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.010.
  • T. F. Cao, H. Lin, L. Chen, Y. L. He, and W. Q. Tao, “Numerical investigation of the coupled water and thermal management in PEM fuel cell,” Appl. Energ., vol. 112, pp. 1115–1125, 2013. DOI: 10.1016/j.apenergy.2013.02.031.
  • Mulyazmi, W. R. W. Daud, E. H. Majlan, and M. I. Rosli, “Water balance for the design of a PEM fuel cell system,” Int. J. Hydrogen Energy, vol. 38, pp. 9409–9420, 2013. DOI: 10.1016/j.ijhydene.2012.12.014.
  • S. F. Burlatsky, V. V. Atrazhev, M. Gummalla, D. A. Condit, and F. Q. Liu, “The impact of thermal conductivity and diffusion rates on water vapor transport through gas diffusion layers,” J. Power Sources, vol. 190, pp. 485–492, 2009. DOI: 10.1016/j.jpowsour.2008.12.131.
  • I. Tolj, D. Bezmalinovic, and F. Barbir, “Maintaining desired level of relative humidity throughout a fuel cell with spatially variable heat removal rates,” Int. J. Hydrogen Energy, vol. 36, pp. 13105–13113, 2011. DOI: 10.1016/j.ijhydene.2011.07.078.
  • Z. C. Liu, J. Shen, H. C. Pei, Z. K. Tu, J. Wang, Z. M. Wan, and W. Liu, “Effect of humidified water vapor on heat balance management in a proton exchange membrane fuel cell stack,” Int. J. Energy Res., vol. 39, pp. 504–515, 2015. DOI: 10.1002/er.3264.
  • S. Basu, C. Y. Wang, and K. S. Chen, “Phase change in a polymer electrolyte fuel cell,” J. Electrochem. Soc., vol. 156, pp. B748–B756, 2009. DOI: 10.1149/1.3115470.
  • E. Afshari and S. A. Jazayeri, “Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance,” Energ. Convers. Manage., vol. 51, pp. 655–662, 2010. DOI: 10.1016/j.enconman.2009.11.004.
  • Y. Wang and K. S. Chen, “Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number,” J. Power Sources, vol. 315, pp. 224–235, 2016. DOI: 10.1016/j.jpowsour.2016.03.045.
  • B. Straubhaar, J. Pauchet, and M. Prat, “Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells,” Int. J. Heat Mass Transfer, vol. 102, pp. 891–901, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.078.
  • N. Belgacem, M. Prat, and J. Pauchet, “Coupled continuum and condensation evaporation pore network model of the cathode in polymer–electrolyte fuel cell,” Int. J. Hydrogen Energy, vol. 42, pp. 8150–8165, 2017. DOI: 10.1016/j.ijhydene.2017.01.184.
  • E. F. Médici and J. S. Allen, “Evaporation, two phase flow, and thermal transport in porous media with application to low-temperature fuel cells,” Int. J. Heat Mass Transfer, vol. 65, pp. 779–788, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.035.
  • W. W. Yang and T. S. Zhao, “Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation,” J. Power Sources, vol. 174, pp. 136–147, 2007. DOI: 10.1016/j.jpowsour.2007.08.075.
  • N. Khajeh-Hosseini-Dalasm, K. Fushinobu, and K. Okazaki. “Phase change in the cathode side of a proton exchange membrane fuel cell,” J. Power Sources, vol. 195, pp. 7003–7010, 2010. DOI: 10.1016/j.jpowsour.2010.04.089.
  • K. T. Cho and M. M. Mench, “Fundamental characterization of evaporative water removal from fuel cell diffusion media,” J. Power Sources, vol. 195, pp. 3858–3869, 2010. DOI: 10.1016/j.jpowsour.2009.12.084.
  • P. Karthikeyan, P. Velmurugan, A. J. George, R. R. Kumar, and R. J. Vasanth, “Experimental investigation on scaling and stacking up of proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 39, pp. 11186–11195, 2014. DOI: 10.1016/j.ijhydene.2014.05.086.
  • E. U. Ubong, Z. Shi, and X. Wang, “Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell,” J. Electrochem. Soc., vol. 156, pp. B1276–B1282, 2009. DOI: 10.1149/1.3203309.
  • D. Nield and A. Bejan. Convection in Porous Media, 4rd ed. New York: Springer, 2013.
  • K. W. Lawson and D. R. Lloyd, “Membrane distillation,” J. Membr. Sci., vol. 124, pp. 1–25, 1997. DOI: 10.1016/s0376-7388(96)00236-0.
  • J. Phattaranawik, R. Jiraratananon, and A. G. Fane, “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation,” J. Membr. Sci., vol. 215, pp. 75–85, 2003. DOI: 10.1016/s0376-7388(02)00603-8.
  • W. Kast and C. R. Hohenthanner, “Mass transfer within the gas-phase of porous media,” Int. J. Heat Mass Transfer, vol. 43, pp. 807–823, 2000. DOI: 10.1016/s0017-9310(99)00158-1.
  • A. K. Sadaghiani and A. Kosar, “Numerical and experimental investigation on the effects of diameter and length on high mass flux subcooled flow boiling in horizontal microtubes,” Int. J. Heat Mass Transfer, vol. 92, pp. 824–837, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.004.
  • M. Ishii and K. Mishima, Study of Two-Fluid Model and Interfacial Area. Chicago, IL: Argonne National Lab, 1980.
  • N. Kurul and M. Z. Podowski, “Multidimensional effects in forced convection subcooled boiling,” Proceedings of the Ninth International Heat Transfer Conference, Israel, pp. 19–24, 1990.
  • W. Ranz and W. Marshall, “Evaporation from drops,” Chem. Eng. Prog., vol. 48, pp. 141–146, 1952.
  • G. Kocamustafaogullari and M. Ishii, “Interfacial area and nucleation site density in boiling systems,” Int. J. Heat Mass Transfer, vol. 26, pp. 1377–1387, 1983. DOI: 10.1016/s0017-9310(83)80069-6.
  • J. Rogers and J. H. Li, “Prediction of the onset of significant void in flow boiling of water,” J. Heat Transfer., vol. 116, pp. 1049–1053, 1994. DOI: 10.1115/1.2911444.
  • T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer electrolyte fuel cell model,” J. Electrochem, Soc., vol. 138, pp. 2334–2342, 1991. DOI: 10.1002/9783527616794.ch4.
  • D. F. Cheddie and N. D. H. Munroe, “Three dimensional modeling of high temperature PEM fuel cells,” J. Power Sources, vol. 160, pp. 215–223, 2006. DOI: 10.1016/j.jpowsour.2006.01.035.
  • T. Berning and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study,” J. Power Sources, vol. 124, pp. 440–452, 2002. DOI: 10.1016/s0378-7753(03)00816-4.
  • M. S. Chiang, H. S. Chu, C. K. Chen, and S. R. Jian, “Electrochemical reaction and performance of proton exchange membrane fuel cells with a novel cathode flow channel shape,” J. Power Sources, vol. 166, pp. 362–375, 2007. DOI: 10.1016/j.jpowsour.2007.01.084.
  • W. W. Yang, T. S. Zhao, and C. Xu, “Three-dimensional two-phase mass transport model for direct methanol fuel cells,” J. Electrochim. Acta, vol. 53, pp. 853–862, 2008. DOI: 10.1016/j.electacta.2007.07.070.
  • N. Zamel, X. Li, J. Shen, J. Becker, and A. Wiegmann, “Estimating effective thermal conductivity in carbon paper diffusion media,” Chem. Eng. Sci., vol. 65, pp. 3994–4006, 2010. DOI: 10.1016/j.ces.2010.03.047.
  • H. Ju, H. Meng, and C. Y. Wang, “A single-phase, non-isothermal model for PEM fuel cells,” Int. J. Heat Mass Transfer, vol. 48, pp. 1303–1315, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.004.
  • A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources, vol. 157, pp. 11–27, 2006. DOI: 10.1016/j.jpowsour.2006.02.065.
  • A. Su, Y. M. Ferng, W. T. Chen, C. H. Cheng, F. B. Weng, and C. Y. Lee, “Investigating the transport characteristics and cell performance for a micro PEMFC through the micro sensors and CFD simulations,” Int. J. Hydrogen Energy, vol. 37, pp. 11321–11333, 2012. DOI: 10.1016/j.ijhydene.2012.04.159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.