Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 11
1,085
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Conjugated heat transfer investigation with racetrack-shaped jet hole and double swirling chamber in rotating jet impingement

, , , ORCID Icon &
Pages 768-787 | Received 15 Jul 2017, Accepted 08 Mar 2018, Published online: 14 Jun 2018

References

  • J.-C. Han and M. Huh, “Recent studies in turbine blade internal cooling,” Heat. Transf. Res., vol. 41, no. 8, pp. 803–828, 2010. DOI: 10.1615/HeatTransRes.v41.i8.30.
  • J.-C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed. New York, NY, USA: CRC Press, chap. 4, 2012.
  • P. Ligrani, “Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines,” IJRM., vol. 2013, pp. 275653, 2013.
  • B. Han and R. Goldstein, “Jet‐impingement heat transfer in gas turbine systems,” Ann. N Y. Acad. Sci., vol. 934, no. 1, pp. 147–161, 2006.
  • N. Zuckerman and N. Lior, “Jet impingement heat transfer: physics, correlations, and numerical modeling,” in Advances in Heat Transfer, J. P. H. A. B.-C. George, A. Greene, and I. C. Young, Eds. Amsterdam, Netherlands: Elsevier, 2006, pp. 565–631.
  • B. Weigand and S. Spring, “Multiple jet impingement - a review,” Heat. Transf. Res., vol. 42, no. 2, pp. 101–142, 2011. DOI: 10.1615/HeatTransRes.v42.i2.30.
  • K. Elebiary and M. Taslim, “Experimental/numerical crossover jet impingement in an airfoil leading-edge cooling channel,” J. Turbomach., vol. 135, no. 1, pp. 011037, 2012. DOI: 10.1115/1.4006420.
  • Y. Xing, S. Spring, and B. Weigand, “Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets,” J. Heat. Trans.-T. ASME., vol. 132, no. 9, pp. 092201, 2010.
  • C. Wang, L. Wang, and B. Sundén, “A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair,” Int. J. Heat. Mass. Transfer., vol. 88, pp. 82–90, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.056.
  • C. Wang, L. Luo, L. Wang, and B. Sundén, “Effects of vortex generators on the jet impingement heat transfer at different cross-flow reynolds numbers,” Int. J. Heat. Mass. Transfer., vol. 96, pp. 278–286, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.642.
  • L. Yang, Z. Min, P. N. Sarwesh, and M. K. Chyu, “Numerical optimizations of hybrid-linked jet impingement heat transfer based on the genetic algorithm,” Numer. Heat. Tr. A. Appl., vol. 70, no. 11, pp. 1179–1194, 2016. DOI: 10.1080/10407782.2016.1243946.
  • Z. Liu, J. Li, Z. Feng, and T. Simon, “Numerical study on the effect of jet spacing on the swirl flow and heat transfer in the turbine airfoil leading edge region,” Numer. Heat. Tr. A. Appl., vol. 70, no. 9, pp. 980–994, 2016. DOI: 10.1080/10407782.2016.1230381.
  • D. Singh, B. Premachandran, and S. Kohli, “Numerical simulation of the jet impingement cooling of a circular cylinder,” Numer. Heat. Tr. A. Appl., vol. 64, no. 2, pp. 153–185, 2013. DOI: 10.1080/10407782.2013.772869.
  • P. M. Ligrani, Z. Ren, and W. C. Buzzard, “Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays,” Int. J. Heat. Mass. Transfer., vol. 107, pp. 895–905, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.123.
  • N. Uddin, S. O. Neumann, and B. Weigand, “Heat transfer enhancement by velocity field excitation for an impinging round jet,” Numer. Heat. Tr. A. Appl., vol. 69, no. 8, pp. 811–824, 2016.
  • K. Kusterer et al., “Novel gas turbine blade leading edge cooling configuration using advanced double swirl chambers,” presented at the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, Montreal, Canada, pp. V05AT11A006, 2015.
  • K. Kusterer et al., “Conjugate heat transfer analysis of a blade leading edge cooling configuration using double swirl chambers, presented at the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, Seoul, Korea, pp. V05BT11A010, 2016. DOI: 10.1016/j.expthermflusci.2015.08.006.
  • M. Attalla, H. M. Maghrabie, A. Qayyum, A. G. Al-Hasnawi, and E. Specht, “Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets,” Appl. Therm. Eng., vol. 120, pp. 160–169, 2017.
  • X. T. Trinh, M. Fénot, and E. Dorignac, “The effect of nozzle geometry on local convective heat transfer to unconfined impinging air jets,” Exp. Therm. Fluid. Sci., vol. 70, pp. 1–16, 2016.
  • Z.-X. Wen, Y.-L. He, X.-W. Cao, and C. Yan, “Numerical study of impinging jets heat transfer with different nozzle geometries and arrangements for a ground fast cooling simulation device,” Int. J. Heat. Mass. Transfer., vol. 95, pp. 321–335, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.022.
  • J. A. Parsons and J.-C. Han, “Rotation effect on jet impingement heat transfer in smooth rectangular channels with heated target walls and radially outward cross flow,” Int. J. Heat. Mass. Transfer., vol. 41, no. 13, pp. 2059–2071, 1998. DOI: 10.1016/S0017-9310(97)00286-X.
  • S. K. Hong, D. H. Lee, and H. H. Cho, “Effect of rotation on heat/mass transfer for an impingement/effusion cooling system,” J. Heat. Trans.-T. ASME., vol. 132, no. 11, pp. 112210–114501, 2010.
  • S. K. Hong, D. H. Lee, and H. H. Cho, “Heat/mass transfer measurement on concave surface in rotating jet impingement,” J. Mech. Sci. Technol., vol. 22, no. 10, pp. 1952–1958, 2008.
  • L. Furlani, A. Armellini, and L. Casarsa, “Rotational effects on the flow field inside a leading edge impingement cooling passage,” Exp. Therm. Fluid. Sci., vol. 76, pp. 57–66, 2016. DOI: 10.1016/j.expthermflusci.2016.03.004.
  • P. Singh and S. Ekkad, “Effects of rotation on heat transfer due to jet impingement on cylindrical dimpled target surface,” presented at the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, Seoul, Korea, pp. V05BT16A010, 2016.
  • E. Burberi et al., “Effect of rotation on a gas turbine blade internal cooling system: numerical investigation,” J. Turbomach., vol. 139, no. 3, pp. 031005, 2016.
  • C. A. Elston and L. M. Wright, “Leading edge jet impingement under high rotation numbers,” J. Therm. Sci. Eng. Appl., vol. 9, no. 2, pp. 021010, 2017.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA. J., vol. 32, no. 8, pp. 1598–1605, 1994.
  • K. Kusterer et al., “Heat transfer enhancement for gas turbine internal cooling by application of double swirl cooling chambers,” presented at the in: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, San Antonio, TX, USA, pp. V03AT12A027-V003AT012A027, 2013.
  • W. Li, J. Ren, J. Hongde, Y. Luan, and P. Ligrani, “Assessment of six turbulence models for modeling and predicting narrow passage flows, part 1: Impingement jets,” Numer. Heat. Tr. A. Appl., vol. 69, no. 5, pp. 109–127, 2016. DOI: 10.1080/10407782.2015.1069665.
  • L. Yang, J. Ren, H. Jiang, and P. Ligrani, “Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage,” Int. J. Heat. Mass. Transfer., vol. 71, pp. 57–68, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.006.
  • ANSYS CFX, Reference Guide, Release, 17.0, 2016.