Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 10
221
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An isogeometric independent coefficients (IGA-IC) reduced order method for accurate and efficient transient nonlinear heat conduction analysis

, , , , &
Pages 667-684 | Received 26 Dec 2017, Accepted 14 Apr 2018, Published online: 31 May 2018

References

  • R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer. Boca Raton, FL: CRC Press, 2012.
  • D. W. Hahn and M. N. Özisik, Heat Conduction. Chichester, UK: John Wiley & Sons, 2012.
  • N. Ozisik, Finite Difference Methods in Heat Transfer. Boca Raton, FL: CRC Press, 1994.
  • M. Mohammadi, M. R. Hematiyan, and L. Marin, “Boundary element analysis of nonlinear transient heat conduction problems involving non-homogenous and nonlinear heat sources using time-dependent fundamental solutions,” Eng. Anal. Boundary Elem., vol. 34, pp. 655–665, 2010.
  • R. W. Lewis, K. Morgan, H. R. Thomas, and K. Seetharamu, The Finite Element Method in Heat Transfer Analysis. Chichester, UK: John Wiley & Sons, 1996.
  • J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics. Boca Raton, FL: CRC Press, 2010.
  • X. Y. Cui, S. Z. Feng, and G. Y. Li, “A cell-based smoothed radial point interpolation method (CS-RPIM) for heat transfer analysis,” Eng. Anal. Bound. Elem., vol. 40, pp. 147–153, 2014.
  • T. Chen, R. Mo, and X. Zhang, “Isogeometric analysis for transient heat conduction of solid medium,” Comput. Integ. Manuf. Syst., vol. 17, pp. 1988–1996, 2011.
  • H. Adeli, W. Weaver, and J. M. Gere, “Algorithms for nonlinear structural dynamics,” J. Struct. Div., vol. 104, pp. 263–280, 1978.
  • M. C. Katona and O. C. Zienkiewicz, “A unified set of single step algorithms part 3: the beta‐m method, a generalization of the Newmark scheme,” Int. J. Numer. Meth. Eng., vol. 21, pp. 1345–1359, 1985.
  • N. M. Newmark, “A method of computation for structural dynamics,” ASCE Trans., vol. 127, pp. 1406–1435, 1962.
  • H. M. Hilber, T. J. Hughes, and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthq. Eng. Struct. Dynam., vol. 5, pp. 283–292, 1977.
  • W. X. Zhong and F. W. Williams, “A precise time step integration method,” Proc. Inst. Mech. Eng. C, vol. 208, pp. 427–430, 1994.
  • M. Shimada and K. K. Tamma, “Explicit time integrators and designs for first/second order linear transient systems,” Encycl. Therm. Stresses, vol. 3, pp. 1524–1530, 2013.
  • M. Shimada, S. Masuri, and K. K. Tamma, “Isochronous explicit time integration framework: illustration to thermal stress problems involving both first-and second-order transient systems,” J. Therm. Stresses, vol. 37, no. 9, pp. 1066–1079, 2014.
  • T. Xue, K. K. Tamma, and X. Zhang, “A consistent Moving Particle System Simulation method: applications to parabolic/hyperbolic heat conduction type problems,” Int. J. Heat Mass Transfer, vol. 101, pp. 365–372, 2016.
  • K. K. Tamma and S. U. Masuri, “A novel extension of GS4-1 time integrator to fluid dynamics type non-linear problems with illustrations to Burgers’ equation,” Int. J. Numer. Meth. Heat Fluid Flow, vol. 26, pp. 1634–1660, 2016.
  • S. U. Masuri and K. K. Tamma, “Application of GS4-1time integration framework to linear heat transfer: transient heat conduction,” in Encyclopedia of Thermal Stresses, The Netherlands: Springer, 2014, pp. 181–191.
  • S. U. Masuri and K. K. Tamma, “Application of GS4-1 time integration framework to nonlinear heat transfer: heat conduction in medium with temperature-dependent velocity,” in Encyclopedia of Thermal Stresses, The Netherlands: Springer, 2014, pp. 191–206.
  • S. Masuri, K. K. Tamma, X. Zhou, and M. Sellier, “GS4-1 computational framework for heat transfer problems: part 1—linear cases with illustration to thermal shock problem,” Numer. Heat Tr. B-Fund., vol. 62, no. 2–3, pp. 141–156, 2012.
  • S. Masuri, K. K. Tamma, X. Zhou, and M. Sellier, “GS4-1 computational framework for heat transfer problems: part 2—extension to nonlinear cases with illustration to radiation heat transfer problem,” Numer. Heat Tr B-Fund., vol. 62, pp. 157–180, 2012.
  • E. L. Wilson, K. J. Bathe, and F. E. Peterson, “Finite element analysis of linear and nonlinear heat transfer,” Nucl. Eng. Des., vol. 29, pp. 110–124, 1974.
  • R. Bialecki and A. J. Nowak, “Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions,” Appl. Math. Model., vol. 5, pp. 417–421, 1981.
  • D. O. Buckley, Solution of Nonlinear Transient Heat Transfer Problems, M.S. Thesis, Florida International University, Miami, FL, USA. 2010.
  • S. Z. Feng, X. Y. Cui, and A. M. Li, “Fast and efficient analysis of transient nonlinear heat conduction problems using combined approximations (CA) method,” Int. J. Heat Mass Transfer, vol. 97, pp. 638–644, 2016.
  • H. Wang, H. Chong, and G. Li, “Extension of reanalysis method, analysis of heat conduction by using CA and IC methods,” Eng. Anal. Bound. Elem., vol. 85, pp. 87–98, 2017.
  • T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Meth. Appl. Mech. Eng., vol. 194, pp. 4135–4195, 2005.
  • J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, New York: Wiley, 2009.
  • S. Cho and S. H. Ha, “Isogeometric shape design optimization: exact geometry and enhanced sensitivity,” Struct. Multidisc. Optim., vol. 38, pp. 53–70, 2009.
  • C. S. Ding, X. Y. Cui, and G. Y. Li, “Accurate analysis and thickness optimization of tailor rolled blanks based on isogeometric analysis,” Struct. Multidisc. Optim., vol. 54, pp. 871–887, 2016.
  • L. Dedè, M. J. Borden, and T. J. R. Hughes, “Isogeometric analysis for topology optimization with a phase field model,” Arch. Comput. Meth. Eng., vol. 19, pp. 427–465, 2012.
  • D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Isogeometric shell analysis: the Reissner–Mindlin shell,” Comput. Meth. Appl. Mech. Eng., vol. 199, pp. 276–289, 2010.
  • J. Kiendl, K. U. Bletzinger, J. Linhard, and R. W¨uchner, “Isogeometric shell analysis with Kirchhoff–Love elements,” Comput. Meth. Appl. Mech. Eng., vol. 198, pp. 3902–3914, 2009.
  • Y. Bazilevs and T. J. R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components,” Comput. Mech., vol. 43, pp. 143–150, 2008.
  • Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow,” Comput. Mech., vol. 38, pp. 310–322, 2006.
  • L. D. Lorenzis, I. Temizer, P. Wriggers, and G. Zavarise, “A large deformation frictional contact formulation using NURBS-based isogeometric analysis,” Int. J. Numer. Meth. Eng., vol. 87, pp. 1278–1300, 2011.
  • C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and D. R. Borst, “An isogeometric analysis approach to gradient damage models,” Int. J. Numer. Meth. Eng., vol. 86, pp. 115–134, 2011.
  • V. P. Nguyena, C. Anitescuc, S. P. A. Bordasa, and T. Rabczukc, “Isogeometric analysis: an overview and computer implementation aspects,” Math. Comput. Simul., vol. 11, pp. 789–116, 2015.
  • L. D. Lorenzis, P. Wriggers, and T. J. R. Hughes, “Isogeometric contact: a review,” GAMM-Mitt., vol. 37, pp. 85–123, 2014.
  • U. Kirsch (Ed.), “A unified reanalysis approach for structural analysis, design, and optimization,” Struct. Multidisc. Optim., vol. 25, pp. 67–85, 2003.
  • J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix,” Ann. Math. Stat., vol. 20, p. 621, 1949.
  • T. A. Davis and W.W. Hager, “Modifying a sparse Cholesky factorization,” SIAM J. Matrix Anal. Appl., vol. 20, pp. 606–627, 1999.
  • T. A. Davis and W. W. Hager, “Multiple-rank modifications of a sparse Cholesky factorization,” SIAM J. Matrix Anal. Appl., vol. 22, pp. 997–1013, 2001.
  • H. F. Liu, B. S. Wu, and Z.G. Li, “Method of updating the Cholesky factorization for structural reanalysis with added degrees of freedom,” J. Eng. Mech., vol. 140, pp. 384–392, 2013.
  • G. X. Huang, H. Wang, and G. Y. Li, “An exact reanalysis method for structures with local modifications,” Struct. Multidisc. Optim., vol. 54, pp. 499–509, 2016.
  • C. S. Ding, X. Y. Cui, G. X. Huang, G. Y. Li, and K. K. Tamma, “Exact and efficient isogeometric reanalysis of accurate shape and boundary modifications,” Comput. Meth. Appl. Mech. Eng., vol. 318, pp. 619–635, 2017.
  • U. Kirsch and P. Y. Papalambros, “Structural reanalysis for topological modifications – a unified approach,” Struct. Multidisc. Optim., vol. 21, pp. 333–344, 2001.
  • U. Kirsch (Ed.), “Reanalysis of structures,” in A Unified Approach for Linear, Nonlinear, Static and Dynamic Systems, Solid Mechanics and its Application, The Netherlands: Springer, 2008, pp. 93–120.
  • U. Kirsch, M. Bogomolni, and I. Sheinman, “Nonlinear dynamic reanalysis of structures by combined approximations,” Comput. Meth. Appl. Eng., vol. 195, pp. 4420–4432, 2006.
  • S. Chen and Z. Yang, “A universal method for structural static reanalysis of topological modification,” Int. J. Numer. Meth. Eng., vol. 61, pp. 673–686, 2004.
  • U. Kirsch, M. Kocvara, and J. Zowe, “Accurate reanalysis of structures by a preconditioned conjugate gradient method,” Int. J. Numer. Meth. Eng., vol. 55, pp. 233–251, 2002.
  • B. S. Wu, C. Lim, and Z. Li, “A finite element algorithm for reanalysis of structures with added degrees of freedom,” Finite Elem. Anal. Des., vol. 40, pp. 1791–1801, 2004.
  • B. S. Wu and Z. Li, “Reanalysis of structural modifications due to removal of degrees of freedom,” Acta Mech., vol. 18, pp. 061–71, 2005.
  • X. Yang, S. Chen, and B. Wu, “Eigenvalue reanalysis of structures using perturbations and Padé approximation,” Mech. Syst. Signal Process., vol. 15, pp. 257–263, 2001.
  • G. X. Huang, H. Wang, and G. Y. Li, “A reanalysis method for local modification and the application in large-scale problems,” Struct. Multidisc. Optim., vol. 49, pp. 915–930, 2014.
  • Z. X. Cheng and H. Wang, “A meshless-based local reanalysis method for structural analysis,” Comput. Struct., vol. 19, pp. 2126–2143, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.