Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 4
448
Views
6
CrossRef citations to date
0
Altmetric
Articles

Development of multilayer perceptron artificial neural network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt number and pressure drop of TiO2/water nanofluid flows through non-straight pathways

, , &
Pages 1190-1206 | Received 01 May 2018, Accepted 27 Aug 2017, Published online: 17 Oct 2018

References

  • K. Narrein and H. A. Mohammed, “Heat transfer and fluid flow characteristics in helically coiled tube heat exchanger (HCTHE) using nanofluids: a review,” J. Comput. Theor. Nanosci., vol. 11, pp. 911–927, 2014.
  • S. Vashisth, V. Kumar, and K. D. P. Nigam, “A review on the potential applications of curved geometries in process industry,” Ind. Eng. Chem. Res., vol. 47, no. 10, pp. 3291–3337, 2008.
  • M. Kahani, S. Zeinali Heris, and S. M. Mousavi, “Multiwalled carbon nanotube/water nanofluid or helical coiling technique, which of them is more effective?” Ind. Eng. Chem. Res., vol. 52, no. 36, pp. 13183–13191, 2013.
  • J. H. Grindley, and A. H. Gibson, “On the frictional resistance of air through a pipe,” Proc. R. Soc. London Ser., vol. 80, no. 536, pp. 114–139, 1908.
  • D. Jeschke, “Heat transfer and pressure loss in coiled pipes,” Ergaenzungsheft Z Ver Disch Ing., vol. 68, pp. 24–28, 1925.
  • G. Huminic and A. Huminic. “Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: a review,” Renew. Sust. Energy Rev., vol. 58, pp. 1327–1347, 2016.
  • S. Rainieri, F. Bozzoli, L. Cattani, and G. Pagliarini, “Compound convective heat transfer enhancement in helically coiled wall corrugated tubes,” Int. J. Heat Mass Transf., vol. 59, pp. 353–362, 2013.
  • C. X. Lin and M. A. Ebadian, “Condensation heat transfer and pressure drop of R134a in annular helicoidal pipe at different orientations,” Int J Heat Mass Transf., vol. 50, no. 21–22, pp. 4256–4264, 2007.
  • P. Naphon, “Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fin,” Int. Commun. Heat Mass Transf., vol. 34, no. 3, pp. 321–330, 2007.
  • H. Shokouhmand and M. R. Salimpour, “Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature,” Int. Commun. Heat Mass Transf., vol. 34, no. 6, pp. 753–761, 2007.
  • A. Zachár, “Investigation of natural convection induced outer side heat transfer rate of coiled-tube heat exchangers,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 7892–7901, 2012.
  • R. Beigzadeh and M. Rahimi, “Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations,” Int. Commun. Heat Mass Transf., vol. 39, no. 10, pp. 1647–1653, 2012.
  • N. Kumar, S. S. Sonawane, and S. H. Sonawane, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid,” Int. Commun. Heat Mass Transf., vol. 90, pp. 1–10, 2018.
  • M. Kahani, S. Zeinali Heris, and S. M. Mousavi, “Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils,” Powder Technol., vol. 246, pp. 82–92, 2013.
  • E. Gholami, B. Vaferi, and M. A. Ariana, “Prediction of viscosity of several alumina-based nanofluids using various artificial intelligence paradigms - Comparison with experimental data and empirical correlations,” Powder Technol., vol. 323, pp. 495–506, 2018.
  • N. Nikkam and M. S. Toprak, “Fabrication and thermo-physical characterization of silver nanofluids: An experimental investigation on the effect of base liquid,” Int. Commun. Heat Mass Transf., vol. 91, pp. 196–200, 2018.
  • M. Kahani and G. H. Vatankhah, “Thermal performance prediction of wickless heat pipe with Al2O3/water nanofluid using artificial neural network,” Chem. Eng. Commun., 2018. DOI: 10.1080/00986445.2018.1505614.
  • M. Kahani, H. S. Zeinali, and S. M. Mousavi, “Experimental investigation of TiO2/water nanofluid droplet impingement on nano-structured surfaces,” Ind. Eng. Chem. Res., vol. 55, no. 7, pp. 2230–2224, 2016.
  • M. Kahani, S. Zeinali Heris, and S. M. Mousavi, “Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube,” Heat Mass Transf., vol. 50, no. 11, pp. 1563–1573, 2014.
  • Z. Taghizadeh-Tabari, S. Zeinali Heris, M. Moradi, and M. Kahani, “The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries,” Renew. Sust. Energy Rev., vol. 58, pp. 1318–1326, 2016.
  • M. A. Akhavan-Behabadi, M. Fakoor-Pakdaman, and M. Ghazvini, “Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 556–564, 2012.
  • H. A. Mohammed and K. Narrein, “Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger,” Int. Commun. Heat Mass Transf., vol. 39, no. 9, pp. 1375–1383, 2012.
  • S. M. Hashemi and M. A. Akhavan-Behabadi, “An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux,” Int. Commun. Heat Mass Transf., vol. 39, no. 1, pp. 144–151, 2012.
  • H. Bahremand, A. Abbassi, and M. Saffar-Avval, “Experimental and numerical investigation of turbulent nanofluid flow in helically coiled tubes under constant wall heat flux using Eulerian–Lagrangian approach,” Powder Technol., vol. 269, pp. 93–100, 2015.
  • F. Akbaridoust, M. Rakhsha, A. Abbassi, and M. Saffar-Avval, “Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model,” Int. J. Heat Mass Transf., vol. 58, no. 1–2, pp. 480–491, 2013.
  • A. Safari, M. Saffar-Avval, and E. Amani, “Numerical investigation of turbulent forced convection flow of nanofluid in curved and helical pipe using four-equation model,” Powder Technol., vol. 328, pp. 47–53, 2018.
  • G. Huminic and A. Huminic, “Heat transfer characteristics in double tube helical heat exchangers using nanofluids,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4280–4287, 2011.
  • K. M. Shirvan, M. Mamourian, S. Mirzakhanlari, and R. Ellahi, “Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology,” Powder Technol., vol. 313, pp. 99–111, 2017.
  • M. H. Ahmadi, M. A. Ahmadi, S. A. Sadatsakkak, and M. Feidt, “Connectionist intelligent model estimates output power and torque of stirling engine,” Renew. Sustain. Energy Rev., vol. 50, pp. 871–883, 2015.
  • M. H. Ahmadi, M.-A. Ahmadi, M. Mehrpooya, and M. A. Rosen, “Using GMDH neural networks to model the power and torque of a stirling engine,” Sustainability, vol. 7, no. 2, pp. 2243–2255, 2015.
  • S. M. Pourkiaei, M. H. Ahmadi, and S. M. Hasheminejad, “Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network,” Mech. Indus., vol. 17, no. 1, pp. 105, 2016.
  • S. Toghyani, M. H. Ahmadi, A. Kasaeian, and A. H. Mohammadi, “Artificial neural network, ANN-PSO and ANN-ICA for modelling the stirling engine,” Int. J. Ambient Energy, vol. 37, no. 5, pp. 456–468, 2016.
  • M. H. Ahmadi, M. A. Ahmadi, M. Ashouri, F. Razie Astaraei, R. Ghasempour, and F. Aloui, “Prediction of performance of stirling engine using least squares support machine technique,” Mech. Indus., vol. 17, no. 5, pp. 506, 2016.
  • A. Kasaeian, M. Mehrpooya, M. Aghaie, and M. H. Ahmadi, “Solar radiation prediction based on Ica and HGAPSO for Kuhin city, Iran,” Mech. Indus., vol. 17, no. 5, pp. 509, 2016.
  • A. Kasaeian, M. Ghalamchi, M. H. Ahmadi, and M. Ghalamchi, “GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature,” Mech. Indus., vol. 18, no. 2, pp. 216, 2017.
  • M. H. Ahmadi, M. Alhuyi Nazari, R. Ghasempour, H. Madah, M. B. Shafii, and M. A. Ahmadi, “Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods,” Colloids Surfaces A Physicochem Eng Asp., vol. 541, pp. 154–164, 2018. DOI: 10.1016/J.COLSURFA.2018.01.030.
  • M. H. Ahmadi, S. Sorouri Ghare Aghaj, and A. Nazeri, “Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization,” Neural Comput. Appl., vol. 22, no. 6, pp. 1141–1150, 2013.
  • M. H. Ahmadi, M. A. Ahmadi, M. A. Nazari, O. Mahian, and R. Ghasempour, “A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach,” J. Thermal Anal. Calorim., pp. 1–11. DOI: 10.1007/s10973-018-7035-z.
  • D. A. Drew and S. L. Passman, Theory of Multi Component Fluids, 1st ed., Heidelberg: Springer, 1999.
  • A. Einstein, Investigation on Theory of Brownian Motion, 1st ed., New York: Dover, 1956.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” Chem. Phys., vol. 20, no. 4, pp. 571, 1952.
  • E. J. Wasp, J. P. Kenny, and R. L. Gandhi, “Solid-liquid flow: slurry pipeline transportation [Pumps, valves, mechanical equipment, economics].” Ser. Bulk Mater. Handl. (United States). vol. 1, no. 4, 1977.
  • M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences” Atmos. Environ., vol. 32, no. 14–15, pp. 2627–2636, 1998.
  • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.
  • U. Orhan, M. Hekim, and M. Ozer, “EEG signals classification using the K-means clustering and a multilayer perceptron neural network model,” Expert Syst. Appl., vol. 38, no. 10, pp. 13475–13481, 2011.
  • D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The multilayer perceptron as an approximation to a Bayes optimal discriminant function,” IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296–298, 1990.
  • E. Vanzella et al., “Photometric redshifts with the multilayer perceptron neural network: application to the HDF-S and SDSS,” A&A, vol. 423, no. 2, pp. 761–776, 2004.
  • H. M. Goda, E.-M. Shokir, M. Eissa, K. A. Fattah, and M. H. Sayyouh, “Prediction of the PVT data using neural network computing theory,” In Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, 2003.
  • C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learning, vol. 20, no. 3, pp. 273–297, 1995.
  • E. D. Übeyli, “Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals,” Expert Syst. Appl., vol. 37, pp. 233–239, 2010.
  • T. Van Gestel et al., “Benchmarking least squares support vector machine classifiers,” Mach. Learning, vol. 54, no. 1, pp. 5–32, 2004,
  • K. Pelckmans et al., “LS-SVMlab: a matlab/c toolbox for least squares support vector machines, tutorial. KULeuven-ESAT. Leuven,” Belgium, vol. 142, pp. 1–2, 2002.
  • A. Hemmati-Sarapardeh, A. Shokrollahi, A. Tatar, F. Gharagheizi, A. H. Mohammadi, and A. Naseri, “Reservoir oil viscosity determination using a rigorous approach,” Fuel, vol. 116, pp. 39–48, 2014.
  • J. A. Suykens, T. Van Gestel, and J. De Brabanter, Least Squares Support Vector Machines, Singapore: World Scientific, 2002.
  • H. Wang and D. Hu, “Comparison of SVM and LS-SVM for regression,”. In International Conference on Neural Networks and Brain. ICNN&B'05. IEEE. 2005, vol. 1, pp. 279–283.
  • S. Rafiee-Taghanaki, M. Arabloo, A. Chamkalani, M. Amani, M. H. Zargari, and M. R. Adelzadeh, “Implementation of SVM framework to estimate PVT properties of reservoir oil,” Fluid Phase Equil., vol. 346, pp. 25–32, 2013.
  • A. Shokrollahi, M. Arabloo, F. Gharagheizi, and A. H. Mohammadi, “Intelligent model for prediction of CO2–reservoir oil minimum miscibility pressure,” Fuel, vol. 112, pp. 375–384, 2013.
  • T. V. Gestel, J. A. Suykens, G. Lanckriet, A. Lambrechts, B. D. Moor, and J. Vandewalle, “Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis,” Neural Computation, vol. 14, no. 5, pp. 1115–1147, 2002.
  • A. Najafi-Marghmaleki, A. Barati-Harooni, A. Tatar, A. Mohebbi, and A. H. Mohammadi, “On the prediction of Watson characterization factor of hydrocarbons,” J. Mol. Liq., vol. 231, pp. 419–429, 2017.
  • H. Shayeghi and A. Ghasemi, “Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme,” Energy Conversion Manag., vol. 74, pp. 482–491, 2013.
  • Y.-K. Chan and Y.-C. Tsai, “Multiple regression approach to predict turbine-generator output for chinshan nuclear power plant,” Kerntechnik, vol. 82, no. 1, pp. 24–30, 2017.
  • A. Tatar et al., “Implementing radial basis function neural networks for prediction of saturation pressure of crude oils,” Petroleum Sci. Technol., vol. 34, no. 5, pp. 454–463, 2016.,
  • A. Tatar, A. Barati-Harooni, M. Partovi, A. Najafi-Marghmaleki, and A. H. Mohammadi, “An accurate model for predictions of vaporization enthalpies of hydrocarbons and petroleum fractions,” J. Mol. Liq. vol. 220, pp. 192–199, 2016.
  • A. Tatar et al., “Prediction of water removal rate in a natural gas dehydration system using radial basis function neural network,” Petroleum Sci. Technol., vol. 34, no. 10, pp. 951–960, 2016.,
  • G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signal Syst., vol. 2, no. 4, pp. 303–314, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.