Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 8
238
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of heat transfer by an impinging jet using alumina–water nanofluid

, , , &
Pages 1486-1502 | Received 13 Aug 2018, Accepted 16 Oct 2018, Published online: 28 Jan 2019

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, Proc. 1995 ASME Int. Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, pp. 99–105, 1995.
  • J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhancement thermal conductivity through the development of nanofluids,” in 1996 Fall Meeting of the Materials Research Society (MRS), Boston, USA, 1997.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transf., vol. 121, no. 2, pp. 280–289, 1999.
  • M. Molana and S. Banooni, “Investigation of heat transfer processes involved liquid impingement jets: a review,” Braz. J. Chem. Eng., vol. 30, no. 3, pp. 413–435, 2013.
  • M. Lomascolo, G. Colangelo, M. Milanese, and A. D. Risi, “Review of heat transfer in nanofluids: conductive, convective and radiative experimental results,” Renew. Sustain. Energy Rev., vol. 43, pp. 1182–1198, 2015.
  • M. Raja, R. Vijayan, P. Dineshkumar, and M. Venkatesan, “Review on nanofluids characterization, heat transfer characteristics and applications,” Renew. Sustain. Energy Rev., vol. 64, pp. 163–173, 2016.
  • M. S. Kamel, R. A. Syeal, and A. A. Abdulhussein, “Heat transfer enhancement using nanofluids: a review of the recent literature,” Am. J. Nano Res. Appl., vol. 4, no. 1, pp. 1–5, 2016.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011.
  • L. Godson, B. Raja, D. Mohan Lal, and S. Wongwises, “Enhancement of heat transfer using nanofluids—an overview,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 629–641, 2010.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 13–14, pp. 3187–3196, 2009.
  • N. A. C. Sidik et al., “The significant effect of turbulence characteristics on heat transfer enhancement using nanofluids: a comprehensive review,” Int. Commun. Heat Mass Transf., vol. 72, pp. 39–47, 2016.
  • X. Q. Wang and A. S. Mujumdar, “A review on nanofluids—part I: theoretical and numerical investigations,” Braz. J. Chem. Eng., vol. 25, no. 4, pp. 613–630, 2008.
  • S. Kakaç and A. Pramuanjaroenkij, “Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids—a state-of-the-art review,” Int. J. Therm. Sci., vol. 100, pp. 75–97, 2016.
  • S. M. Vanaki, P. Ganesan, and H. A. Mohammed, “Numerical study of convective heat transfer of nanofluids: a review,” Renew. Sustain. Energy Rev., vol. 54, pp. 1212–1239, 2016.
  • Q. Li, Y. Xuan, and F. Yu, “Experimental investigation of submerged single jet impingement using Cu-water nanofluid,” Appl. Therm. Eng., vol. 36, pp. 426–433, 2012.
  • C. T. Nguyen et al., “An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 401–411, 2009.
  • C. T. Nguyen, G. Laplante, M. Cury, and G. Simon, “Experimental investigation of impinging jet heat transfer and erosion effect using Al2O3–water nanofluid,” in 6th IASME/WSEAS Int. Conf. on Fluid Mechanics and Aerodynamics (FMA'08), Rhodes, Greece, August 20–22, 2008.
  • C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1501–1506, 2007.
  • Y. Feng and C. Kleinstreuer, “Nanofluid convective heat transfer in a parallel-disk system,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4619–4628, 2010.
  • O. Manca, P. Mesolella, S. Nardini, and D. Ricci, “Numerical study of a confined slot impinging jet with nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 188, 2011.
  • G. Roy, C. T. Nguyen, and P. Lajoie, “Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids,” Superlattices Microstruct., vol. 35, no. 3–6, pp. 497–511, 2004.
  • G. Roy, S. J. Palm, and C. T. Nguyen, “Heat transfer and fluid flow of nanofluids in laminar radial flow cooling systems,” Int. J. Therm. Sci., vol. 14, no. 4, pp. 362–367, 2005.
  • S. J. Palm, G. Roy, and C. T. Nguyen, “Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2209–2218, 2006.
  • G. Roy, C. T. Nguyen, and M. Comeau, “Numerical investigation of electronic component cooling enhancement using nanofluids in a radial flow cooling system,” J. Enhanced Heat Transf., vol. 13, no. 2, pp. 101–115, 2006.
  • T. B. Chang, S. C. Syu, and Y. K. Yang, “Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 1014–1021, 2012.
  • O. Zeitoun and M. Ali, “Nanofluid impingement jet heat transfer,” Nanoscale Res. Lett., vol. 7, pp. 139, 2012.
  • S. O. Akansu, “Heat transfers and pressure drops for porous-ring turbulators in a circular pipe,” Appl. Energy, vol. 83, no. 3, pp. 280–298, 2006.
  • Z. Liu, Z. P. Feng, and L. M. Song, “Numerical study of flow and heat transfer of impingement cooling on model of turbine blade leading edge,” in Proc. ASME Turbo Expo, Paper No. GT2010-23711, 2010.
  • Z. Liu and Z. Feng, “Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge,” Int. J. Heat Mass Transf., vol. 54, no. 23–24, pp. 4949–4959, 2011.
  • E. E. M. Olsson, L. M. Ahrneand, and A. C. Tragardh, “Heat transfer from a slot air jet impinging on a circular cylinder,” J. Food Eng., vol. 63, no. 4, pp. 393–401, 2004.
  • B. Sagot, G. Antonini, A. Christgen, and F. Buron, “Jet impingement heat transfer on a flat plate at a constant wall temperature,” Int. J. Therm. Sci., vol. 47, no. 12, pp. 1610–1619, 2008.
  • F. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
  • W. Peng, L. Jizu, B. Minli, W. Yuyan, and H. Chengzhi, “A numerical investigation of impinging jet cooling with nanofluids,” Nanoscale Microscale Thermophys. Eng., vol. 18, no. 4, pp. 329–353, 2014.
  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” ASME J. Heat Transf., vol. 125, no. 1, pp. 151–155, 2003.
  • Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” Int. J. Heat Mass Transf., vol. 49, no. 1–2, pp. 240–250, 2006.
  • J. A. Eastman et al., “Novel thermal properties of nanostructured materials,” J. Metastable Nanocryst. Mater., vol. 2–6, pp. 629–634, 1999.
  • S. P. Jang and S. U. S. Choi, “Cooling performance of a micro channel heat sink with nanofluids,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2457–2463, 2006.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanopart. Res., vol. 6, no. 6, pp. 577–588, 2004.
  • B. C. Sahoo, R. S. Vajjha, R. Ganguli, G. A. Chukwu, and D. K. Das, “Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations,” Pet. Sci. Technol., vol. 27, no. 15, pp. 1757–1770, 2009.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–581, 1952.
  • L. Richardson and A. Gaunt, “The deferred approach to the limit, part I. Single lattice, part II. Interpenetrating lattices,” Philos. Trans. R. Soc. Lond. Ser. A, vol. 226, no. 636–646, pp. 299–361, 1927.
  • I. B. Celik et al., “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng., vol. 130, pp. 078001-1–078001-4, 2008.
  • M. J. Tummers, J. Jacobse, and S. G. J. Voorbrood, “Turbulent flow in the near field of a round impinging jet,” Int. J. Heat Mass Transf., vol. 54, no. 23–24, pp. 4939–4948, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.