Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 12
300
Views
4
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional numerical simulation on the spreading characteristics of a liquid metal droplet in a horizontal magnetic field

, , &
Pages 1786-1803 | Received 27 Aug 2018, Accepted 23 Oct 2018, Published online: 04 Jan 2019

References

  • A. McDonald, M. Lamontagne, C. Moreau, and S. Chandra, “Impact of plasma-sprayed metal particles on hot and cold glass surfaces,” Thin Solid Films, vol. 514, no. 1–2, pp. 212–222, 2006.
  • D. B. van Dam and C. Le Clerc, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate,” Phys. Fluids, vol. 16, no. 9, pp. 3403–3414, 2004.
  • D. Attinger, Z. Zhao, and D. Poulikakos, “An experimental study of molten microdroplet surface deposition and solidification: Transient behavior and wetting angle dynamics,” J. Heat Transfer, vol. 122, no. 3, pp. 544–556, 2000.
  • A. M. Worthington, “On the forms assumed by drops of liquids falling vertically on a horizontal plate,” Proc. R. Soc. London, vol. 25, no. 171–178, pp. 261–272, 1876.
  • J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” Euro Phys. Lett., vol. 108, no. 2, pp. 24001, 2014.
  • J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a film of air: Drops impacting on a surface,” Phys. Rev. Lett., vol. 108, no. 7, pp. 074503, 2012.
  • E. Q. Li and S. T. Thoroddsen, “Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface,” J. Fluid Mech., vol. 780, pp. 636–648, 2015.
  • E. Q. Li, I. U. Vakarelski, and S. T. Thoroddsen, “Probing the nanoscale: the first contact of an impacting drop,” J. Fluid Mech., vol. 785, pp. R2, 2015.
  • C. W. Visser, P. E. Frommhold, S. Wildeman, R. Mettin, D. Lohse, and C. Sun, “Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns,” Soft Matter, vol. 11, no. 9, pp. 1708–1722, 2015.
  • J. Philippi, P.-Y. Lagrée, and A. Antkowiak, “Drop impact on a solid surface: short time self-similarity,” J. Fluid Mech., vol. 795, pp. 96–135, 2016.
  • S. Wildeman, C. W. Visser, C. Sun, and D. Lohse, “On the spreading of impacting drops,” J. Fluid Mech., vol. 805, pp. 636–655, 2016.
  • H. S. Fang, K. Bao, J. A. Wei, H. Zhang, E. H. Wu, and L. L. Zheng, “Simulations of droplet spreading and solidification using an improved SPH model,” Numer. Heat Transf. Part A Appl., vol. 55, no. 2, pp. 124–143, 2009.
  • A. L. Yarin, “Drop impact dynamics: Splashing, spreading, receding, bouncing…,” Annu. Rev. Fluid Mech., vol. 38, no. 1, pp. 159–192, 2006.
  • R. Rioboo, M. Marengo, and C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, vol. 33, no. 1, pp. 112–124, 2002.
  • L. Hulse-Smith, N. Z. Mehdizadeh, and S. Chandra, “Deducing drop size and impact velocity from circular bloodstains,” J. Forensic Sci., vol. 50, no. 1, pp. 1–10, 2005.
  • H. Minemawari et al., “Inkjet printing of single-crystal films,” Nature, vol. 475, no. 7356, pp. 364–367, 2011.
  • C. Josserand and S. T. Thoroddsen, “Drop impact on a solid surface,” Annu. Rev. Fluid Mech., vol. 48, no. 1, pp. 365–391, 2016.
  • S. Molokov and C. B. Reed, Review of Free-Surface MHD Experiments and Modeling. IL (US): Argonne National Lab., 2000.
  • R. E. Nygren et al., “A fusion reactor design with a liquid first wall and divertor,” Fusion Eng. Des., vol. 72, no. 1–3, pp. 181–221, 2004.
  • A. K. Tong and B. R. Holt, “Numerical study on the solidification of liquid metal droplets impacting onto a substrate,” Numer. Heat Transf. Part A Appl., vol. 31, no. 8, pp. 797–817, 1997.
  • M. Abdou et al., “Blanket/first wall challenges and required R&D on the pathway to DEMO,” Fusion Eng. Des, vol. 100, pp. 2–43, 2015.
  • T. Tagawa, “Numerical simulation of liquid metal free-surface flows in the presence of a uniform static magnetic field,” ISIJ Int., vol. 47, no. 4, pp. 574–581, 2007.
  • J. Zhang, T.-Y. Han, J.-C. Yang, and M.-J. Ni, “On the spreading of impacting drops under the influence of a vertical magnetic field,” J. Fluid Mech., vol. 809, pp. R3, 2016.
  • J. C. Yang, T. Y. Qi, T. Y. Han, J. Zhang, and M. J. Ni, “Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field,” Phys. Fluids, vol. 30, no. 1, pp. 012101, 2018.
  • J.-J. Wang, J. Zhang, M.-J. Ni, and R. Moreau, “Numerical study of single droplet impact onto liquid metal film under a uniform magnetic field,” Phys. Fluids, vol. 26, no. 12, pp. 122107, 2014.
  • D. Shi, Q. Bi, and R. Zhou, “Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method,” Numer. Heat Transf. Part A Appl., vol. 66, no. 2, pp. 144–164, 2014.
  • S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries,” J. Comput. Phys, vol. 190, no. 2, pp. 572–600, 2003.
  • S. Popinet, “An accurate adaptive solver for surface-tension-driven interfacial flows,” J. Comput. Phys., vol. 228, no. 16, pp. 5838–5866, 2009.
  • M. J. Ni, R. Munipalli, N. B. Morley, P. Huang, and M. A. Abdou, “A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system,” J. Comput. Phys, vol. 227, no. 1, pp. 174–204, 2007.
  • J. Zhang and M. J. Ni, “Direct simulation of multi-phase MHD flows on an unstructured cartesian adaptive system,” J. Comput. Phys., vol. 270, pp. 345–365, 2014.
  • H. Tan, “Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces,” Comput. Fluids, vol. 154, pp. 142–166, 2017.
  • M. J. Thoraval et al., “Von kármán vortex street within an impacting drop,” Phys. Rev. Lett., vol. 108, no. 26, pp. 264506 2012.
  • J. Zhang and M. J. Ni, “Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes,” Phys. Fluids, vol. 26, no. 10, pp. 102102, 2014.
  • J. Zhang, M. J. Ni, and R. Moreau, “Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field,” Phys. Fluids, vol. 28, no. 3, pp. 032101, 2016.
  • Y. Sui and P. D. M. Spelt, “Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation,” J. Fluid Mech., vol. 715, pp. 283–313, 2013.
  • T. Bennett and D. Poulikakos, “Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface,” J. Mater. Sci., vol. 28, no. 4, pp. 963–970, 1993.
  • M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, vol. 8, pp. 650–659, 1996.
  • C. Clanet, C. Béguin, D. Richard, and D. Quéré, “Maximal deformation of an impacting drop,” J. Fluid Mech, vol. 517, pp. 199–208, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.