Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 7
611
Views
26
CrossRef citations to date
0
Altmetric
Articles

Heat transfer intensification in horizontal shell and tube latent heat storage unit

, , &
Pages 489-508 | Received 10 Jan 2019, Accepted 21 Mar 2019, Published online: 22 Apr 2019

References

  • G. Alva, L. Liu, X. Huang, and G. Fang, “Thermal energy storage materials and systems for solar energy applications,” Renew. Sustain. Energy Rev., vol. 68, pp. 693–706, 2017. DOI: 10.1016/j.rser.2016.10.021.
  • L. Lei et al., “A review of solar collectors and thermal energy storage in solar thermal applications,” Appl. Energy, vol. 104, pp. 52–58, 2013. DOI: 10.1016/j.apenergy.2012.11.051.
  • A. Shukla, D. Buddhi, and R. L. Sawhney, “Solar water heaters with phase change material thermal energy storage medium: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 2119–2125, 2009. DOI: 10.1016/j.rser.2009.01.024.
  • M. Rezaei et al., “Performance and cost analysis of phase change materials with different melting temperatures in heating systems,” Energy, vol. 53, pp. 173–178, 2013. DOI: 10.1016/j.energy.2013.02.031.
  • M. H. Mahfuz, M. R. Anisur, M. A. Kibria, R. Saidur, and I. H. S. C. Metselaar, “Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application,” Int. Commun. Heat Mass Transf., vol. 57, pp. 132–139, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.07.022.
  • M. Chinnapandian, V. Pandiyarajan, A. Prabhu, and R. Velraj, “Experimental investigation of a cascaded latent heat storage system for diesel engine waste heat recovery,” Energy Sources, Part A: Recover. Utilizat. Environ. Eff., vol. 37, no. 12, pp. 1308–1317, 2015. DOI: 10.1080/15567036.2011.586974.
  • L. Miró, J. Gasia, and L. F. Cabeza, “Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review,” Appl. Energy, vol. 179, pp. 284–301, 2016. DOI: 10.1016/j.apenergy.2016.06.147.
  • L. F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1675–1695, 2011. DOI: 10.1016/j.rser.2010.11.018.
  • A. De Gracia and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy Build., vol. 103, pp. 414–419, 2015. DOI: 10.1016/j.enbuild.2015.06.007.
  • M. K. Rathod and J. Banerjee, “Thermal stability of phase change materials used in latent heat energy storage systems: A review,” Renew. Sustain. Energy Rev., vol. 18, pp. 246–258, 2013. DOI: 10.1016/j.rser.2012.10.022.
  • C. Barreneche, A. L. Pisello, A. I. Fernandez, and L. F. Cabeza, “Experimental methods for the characterization of materials for latent thermal energy storage (part II),” in Recent Advancements in Materials and Systems for Thermal Energy Storage, A. Frazzica and L. F. Cabeza, Eds., pp. 89–101. DOI: 10.1007/978-3-319-96640-3
  • N. R. Vyshak and G. Jilani, “Numerical analysis of latent heat thermal energy storage system,” Energy Convers. Manage., vol. 48, no. 7, pp. 2161–2168, 2007. DOI: 10.1016/j.enconman.2006.12.013.
  • M. K. Rathod and J. Banerjee, “Numerical investigation on latent heat storage unit of different configurations,” Int. J. Mech. Aerospace Indus. Mechatron. Manuf. Eng., vol. 5, pp. 632–652, 2011.
  • M. Hosseini, M. Rahimi, and R. Bahrampoury, “Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system,” Int. Commun. Heat Mass Trans., vol. 50, pp. 128–136, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.11.008.
  • A. Agarwal and R. M. Sarviya, “An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material,” Eng. Sci. Technol.Int. J., vol. 19, no. 1, pp. 619–631, 2016. DOI: 10.1016/j.jestch.2015.09.014.
  • S. P. Jesumathy, M. Udayakumar, S. Suresh, and S. Jegadheeswaran, “An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1298–1306, 2014. DOI: 10.1016/j.jtice.2014.03.007.
  • M. Avci and M. Y. Yazici, “Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit,” Energy Convers. Manage., vol. 73, pp. 271–277, 2013. DOI: 10.1016/j.enconman.2013.04.030.
  • M. A. Kibria, M. R. Anisur, M. H. Mahfuz, R. Saidur, and I. H. S. C. Metselaar, “Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system,” Int. Commun. Heat Mass Trans., vol. 53, pp. 71–78, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.02.023.
  • M. K. Rathod, and J. Banerjee, “Thermal performance of a phase change material-based latent heat thermal storage unit,” Heat Trans. Asian Res., vol. 43, no. 8, pp. 706–719, 2014. DOI: 10.1002/htj.21120.
  • A. Sari, and K. Kaygusuz, “Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes,” Solar Energy, vol. 72, no. 6, pp. 493–504, 2002. DOI: 10.1016/S0038-092X(02)00026-9.
  • K. Kaygusuz and A. Sari, “Thermal performance of palmitic acid as a phase change energy storage material,” Energy Convers. Manage., vol. 43, pp. 863–876, 2002. DOI: 10.1016/S0196-8904(01)00071-1.
  • A. Trp, K. Lenic, and B. Frankovic, “Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit,” Appl. Therm. Eng., vol. 26, no. 16, pp. 1830–1839, 2006. DOI: 10.1016/j.applthermaleng.2006.02.004.
  • S. Seddegh, X. Wang, and A. D. Henderson, “Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system,” Appl. Therm. Eng., vol. 87, pp. 698–706, 2015. DOI: 10.1016/j.applthermaleng.2015.05.067.
  • S. Seddegh, M. M. Joybari, X. Wang, and F. Haghighat, “Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system,” Sustain. Cities Soc., vol. 35, pp. 13–24, 2017. DOI: 10.1016/j.scs.2017.07.024.
  • K. Kaygusuz and A. Sari, “Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material,” Energy Sources, vol. 27, no. 16, pp. 1535–1546, 2005. DOI: 10.1080/009083190914015.
  • M. D. Muhammad, O. Badr, and H. Yeung, “CFD modeling of the charging and discharging of a shell-and-tube latent heat storage system for high-temperature applications,” Numer. Heat Trans. Part A Appl., vol. 68, no. 8, pp. 813–826, 2015. DOI: 10.1080/10407782.2015.1023094.
  • D. Mehta, X. Chaudhari, M. Rathod, and J. Banerjee, “Effect of orientation of shell and tube latent heat storage unit on melting phenomena of phase change material,” 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017) BITS Pilani, Hyderabad, India. (2017).
  • S. Seddegh, X. Wang, and A. D. Henderson, “A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials,” Appl. Therm. Eng., vol. 93, pp. 348–358, 2016. DOI: 10.1016/j.applthermaleng.2015.09.107.
  • N. Kousha, M. J. Hosseini, M. R. Aligoodarz, R. Pakrouh, and R. Bahrampoury, “Effect of inclination angle on the performance of a shell and tube heat storage unit – An experimental study,” Appl. Therm. Eng., vol. 112, pp. 1–19, 2017. DOI: 10.1016/j.applthermaleng.2016.10.203.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, “Numerical study of melting inside concentric and eccentric horizontal annulus,” Appl. Math. Model., vol. 36, no. 9, pp. 4080–4086, 2012. DOI: 10.1016/j.apm.2011.11.033.
  • M. Yusuf Yazici, M. Avci, O. Aydin, and M. Akgun, “Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study,” Solar Energy, vol. 101, pp. 291–298, 2014. DOI: 10.1016/j.solener.2014.01.007.
  • Y. Pahamli, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “Analysis of the effect of eccentricity and operational parameters in PCM- fi lled single-pass shell and tube heat exchangers,” Renew. Energy, vol. 97, pp. 344–357, 2016. DOI: 10.1016/j.renene.2016.05.090.
  • X. Cao, Y. Yuan, B. Xiang, and F. Highlight, “Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit,” Sustain. Cities Soc., vol. 38, pp. 571–581, 2018. DOI: 10.1016/j.scs.2018.01.025.
  • F. Agyenim, P. Eames, and M. Smyth, “Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array,” Renew. Energy, vol. 35, no. 1, pp. 198–207, 2010. DOI: 10.1016/j.renene.2009.03.010.
  • D. Dandotiya and N. D. Banker, “Numerical investigation of heat transfer enhancement in a multitube thermal energy storage heat exchanger using fins,” Numer. Heat Trans. A Appl., vol. 72, no. 5, pp. 389–400, 2017. DOI: 10.1080/10407782.2017.1376976.
  • M. Esapour, M. J. Hosseini, A. A. Ranjbar, Y. Pahamli, and R. Bahrampoury, “Phase change in multi-tube heat exchangers,” Renew. Energy, vol. 85, pp. 1017–1025, 2016. DOI: 10.1016/j.renene.2015.07.063.
  • M. Esapour, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems,” Appl. Therm. Eng., vol. 109, pp. 351–363, 2016. DOI: 10.1016/j.applthermaleng.2016.08.083.
  • B. Başal and A. Ünal, “Numerical evaluation of a triple concentric-tube latent heat thermal energy storage,” Solar Energy, vol. 92, pp. 196–205, 2013. DOI: 10.1016/j.solener.2013.02.032.
  • L. Jian-You, “Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage,” Solar Energy, vol. 82, no. 11, pp. 977–985, 2008. DOI: 10.1016/j.solener.2008.05.006.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohammad, “Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers,” Appl. Therm. Eng., vol. 53, no. 1, pp. 147–156, 2013. DOI: 10.1016/j.applthermaleng.2013.01.011.
  • S. Mat, A. A. Al-Abidi, K. Sopian, M. Y. Sulaiman, and A. T. Mohammad, “Enhance heat transfer for PCM melting in triplex tube with internal-external fins,” Energy Convers. Manage., vol. 74, pp. 223–236, 2013. DOI: 10.1016/j.enconman.2013.05.003.
  • J. M. Mahdi and E. C. Nsofor, “Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination,” Energy, vol. 126, pp. 501–512, 2017. DOI: 10.1016/j.energy.2017.03.060.
  • J. M. Mahdi and E. C. Nsofor, “Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination,” Int. J. Heat Mass Trans., vol. 109, pp. 417–427, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.02.016.
  • R. Elbahjaoui, H. El Qarnia, and A. Naimi, “Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems,” Energy Build., vol. 168, pp. 438–456, 2018. DOI: 10.1016/j.enbuild.2018.02.055.
  • J. C. Kurnia and A. P. Sasmito, “Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage,” Appl. Energy, vol. 227, pp. 542–554, 2018. DOI: 10.1016/j.apenergy.2017.08.087.
  • M. Parsazadeh and X. Duan, “Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system,” Appl. Therm. Eng., vol. 111, pp. 950–960, 2017. DOI: 10.1016/j.applthermaleng.2016.09.133.
  • C. Welsford, A. M. Bayomy, and M. Z. Saghir, “Role of metallic foam in heat storage in the presence of nanofluid and microencapsulated phase change material,” Therm. Sci. Eng. Prog., vol. 7, pp. 61–69, 2018. DOI: 10.1016/j.tsep.2018.05.003.
  • J. M. Khodadadi and S. F. Hosseinizadeh, “Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage,” Int. Commun. Heat Mass Trans., vol. 34, no. 5, pp. 534–543, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.02.005.
  • J. M. Mahdi and E. C. Nsofor, “Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system,” J. Energy Storage, vol. 20, pp. 529–541, 2018. DOI: 10.1016/j.est.2018.09.021.
  • P. V. S. S. Srivatsa, R. Baby, and C. Balaji, “Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins,” Numer. Heat Trans.A Appl., vol. 66, no. 10, pp. 1131–1153, 2014. DOI: 10.1080/10407782.2014.894371.
  • M. Jourabian, M. Farhadi, K. Sedighi, A. A. R. Darzi, and Y. Vazifeshenas, “Melting of NEPCM within a cylindrical tube: Numerical study using the Lattice Boltzmann method,” Numer. Heat Trans. A Appl., vol. 61, pp. 929–948, 2012. DOI: 10.1080/10407782.2012.677375.
  • B. S. Yilbas, S. Z. Shuja, and M. M. Shaukat, “Thermal characteristics of latent heat thermal storage: Comparison of aluminum foam and mesh configurations,” Numer. Heat Trans. A Appl., vol. 68, no. 1, pp. 99–116, 2015. DOI: 10.1080/10407782.2014.977116.
  • M. K. Rathod and J. Banerjee, “Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins,” Appl. Therm. Eng., vol. 75, pp. 1084–1092, 2015. DOI: 10.1016/j.applthermaleng.2014.10.074.
  • A. Sciacovelli, F. Gagliardi, and V. Verda, “Maximization of performance of a PCM latent heat storage system with innovative fins,” Appl. Energy, vol. 137, pp. 707–715, 2015. DOI: 10.1016/j.apenergy.2014.07.015.
  • Z. Khan, Z. Khan, and K. Tabeshf, “Parametric investigations to enhance thermal performance of paraffin through a novel geometrical configuration of shell and tube latent thermal storage system,” Energy Convers. Manage., vol. 127, pp. 355–365, 2016. DOI: 10.1016/j.enconman.2016.09.030.
  • Z. Khan and Z. A. Khan, “Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications,” Appl. Energy, vol. 206, pp. 1158–1168, 2017. DOI: 10.1016/j.apenergy.2017.10.043.
  • A. Rozenfeld, Y. Kozak, T. Rozenfeld, and G. Ziskind, “Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin,” Int. J. Heat Mass Trans., vol. 110, pp. 692–709, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.020.
  • M. Parsazadeh and X. Duan, “Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit,” Appl. Energy, vol. 216, pp. 142–156, 2018. DOI: 10.1016/j.apenergy.2018.02.052.
  • S. Deng, C. Nie, G. Wei, and W.-B. Ye, “Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube,” Energy Build., vol. 183, pp. 161–173, 2019. DOI: 10.1016/j.enbuild.2018.11.018.
  • X. Cao, Y. Yuan, B. Xiang, L. Sun, and Z. Xingxing, “Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures,” Energy Build., vol. 158, pp. 384–392, 2018. DOI: 10.1016/j.enbuild.2017.10.029.
  • M. Gharebaghi and I. Sezai, “Enhancement of heat transfer in latent heat storage modules with internal fins,” Numer. Heat Trans.A Appl., vol. 53, no. 7, pp. 749–765, 2007. DOI: 10.1080/10407780701715786.
  • X. Luo and S. Liao, “Lattice Boltzmann simulation of tree-shaped fins enhanced melting heat transfer,” Numer. Heat Trans. Part A, vol. 74, no. 5, pp. 1228–1243, 2018. DOI: 10.1080/10407782.2018.1523598.
  • M. Fang and G. Chen, “Effects of different multiple PCMs on the performance of a latent thermal energy storage system,” Appl. Therm. Eng., vol. 27, no. 5-6, pp. 994–1000, 2007. DOI: 10.1016/j.applthermaleng.2006.08.001.
  • H. A. Adine and H. El Qarnia, “Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials,” Appl. Math. Model., vol. 33, no. 4, pp. 2132–2144, 2009. DOI: 10.1016/j.apm.2008.05.016.
  • A. H. Mosaffa, L. Garousi Farshi, C. A. Infante Ferreira, and M. A. Rosen, “Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications,” Renew. Energy, vol. 68, pp. 452–458, 2014. DOI: 10.1016/j.renene.2014.02.025.
  • R. V. Seeniraj and N. Lakshmi Narasimhan, “Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs,” Solar Energy, vol. 82, no. 6, pp. 535–542, 2008. DOI: 10.1016/j.solener.2007.11.001.
  • G. Peiró, J. Gasia, L. Miró, and L. F. Cabeza, “Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage,” Renew. Energy, vol. 83, pp. 729–736, 2015. DOI: 10.1016/j.renene.2015.05.029.
  • N. L. Narasimhan, R. Bharath, S. A. Ramji, M. Tarun, and A. Siddarth Arumugam, “Numerical studies on the performance enhancement of an encapsulated thermal storage unit,” Int. J. Therm. Sci., vol. 84, pp. 184–195, 2014. DOI: 10.1016/j.ijthermalsci.2014.05.003.
  • J. Giro-Paloma, M. Martínez, L. F. Cabeza, and A. I. Fernández, “Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1059–1075, 2016. DOI: 10.1016/j.rser.2015.09.040.
  • J. J. Zhang, Z. G. Qu, and Y. Liu, “Numerical study on the melting thermal characteristics of a microencapsulated phase change plate,” Numer. Heat Trans. A Appl., vol. 70, no. 4, pp. 399–419, 2016. DOI: 10.1080/10407782.2016.1177317.
  • R. S. Kumar and D. J. Krishna, “Differential scanning calorimetry (DSC) analysis of latent heat storage materials for low temperature (40–80 °C) solar heating applications,” Int. J. Eng. Res. Technol., vol. 2, pp. 429–455, 2013.
  • K. Kant, A. Shukla, and A. Sharma, “Performance evaluation of fatty acids as phase change material for thermal energy storage,” J. Energy Storage, vol. 6, pp. 153–162, 2016. DOI: 10.1016/j.est.2016.04.002.
  • M. R. Reddigari, N. Nallusamy, A. P. Bappala, and H. R. Konireddy, “Thermal energy storage system using phase change materials – Constant heat source,” Therm. Sci., vol. 16, pp. 1097–1104, 2012. DOI: 10.2298/TSCI100520078R.
  • V. R. Voller, and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Trans., vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • Ansys, Ansys Fluent, 12.0 User’s Guide. Canonsburg, Pennsylvania: Ansys Inc., 2009.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. Hoboken, New Jersey, NJ: Wiley, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.