Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 8
1,718
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of heat and mass transport characteristics in anode-supported solid oxide fuel cells at various operating conditions

, , , , &
Pages 509-522 | Received 07 Feb 2019, Accepted 11 Apr 2019, Published online: 24 May 2019

References

  • O. Z. Sharaf, and M. F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renew. Sust. Energ. Rev., vol. 32, pp. 810–853, 2014. DOI: 10.1016/j.rser.2014.01.012.
  • S. Mekhilef, R. Saidur, and A. Safari, “Comparative study of different fuel cell technologies,” Renew. Sust. Energ. Rev., vol. 16, no. 1, pp. 981–989, 2012. DOI: 10.1016/j.rser.2011.09.020.
  • Z. Z. Li, L. Chen, and W. Q. Tao, “Molecular dynamics simulation of water permeation through the nafion membrane,” Numer. Heat Transfer A, vol. 70, no. 11, pp. 1232–1241, 2016. DOI: 10.1080/10407782.2016.1230424.
  • L. Chen, Y. L. He, and W. Q. Tao, “The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulations,” Numer. Heat Transfer A, vol. 65, no. 3, pp. 216–228, 2014. DOI: 10.1080/10407782.2013.784677.
  • L. Chen, H. Luan, Y. L. He, and W. Q. Tao, “Effects of roughness of gas diffusion layer surface on liquid water transport in micro gas channels of a proton exchange membrane fuel cell,” Numer. Heat Transfer A, vol. 62, no. 4, pp. 295–318, 2012. DOI: 10.1080/10407782.2012.670586.
  • S. A. Li, and B. Sunden, “Numerical Analysis on thermal performance of cooling plates with wavy channels in PEM fuel cells,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 7, pp. 1684–1697, 2018. DOI: 10.1108/HFF-01-2018-0034.
  • C. L. Han, and Z. Q. Chen, “Numerical simulation for the effect of vaporization intensity in membrane on the performance of pem fuel cell,” Numer. Heat Transfer A, vol. 73, no. 3, pp. 177–194, 2018. DOI: 10.1080/10407782.2017.1421370.
  • S. A. Li, J. L. Yuan, G. N. Xie, and B. Sunden, “Numerical investigation of transport phenomena in high temperature proton exchange membrane fuel cells with different flow field designs,” Numer. Heat Transfer A, vol. 72, no. 11, pp. 807–820, 2017. DOI: 10.1080/10407782.2017.1412221.
  • S. A. Li, and B. Sunden, “Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells,” Numer. Heat Transfer A, vol. 74, no. 1, pp. 917–930, 2018. DOI: 10.1080/10407782.2018.1486642.
  • Y. D. Hsieh, Y. H. Chan, and S. S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells,” J. Power Sources, vol. 288, pp. 1–10, 2015. DOI: 10.1016/j.jpowsour.2015.08.080.
  • M. Yan, P. Fu, X. Li, M. Zeng, and Q. W. Wang, “Mass transfer enhancement of a spiral-like interconnector for planar solid oxide fuel cells,” Appl. Energy, vol. 160, pp. 954–964, 2015. DOI: 10.1016/j.apenergy.2015.03.115.
  • M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012–1022, 2006. DOI: 10.1016/j.jpowsour.2006.05.055.
  • M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes,” J. Power Sources, vol. 168, no. 2, pp. 369–378, 2007. DOI: 10.1016/j.jpowsour.2007.03.005.
  • J. X. Shi, and X. J. Xue, “CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties,” Electrochim. Acta, vol. 55, no. 18, pp. 5263–5273, 2010. DOI: 10.1016/j.electacta.2010.04.060.
  • M. Andersson, J. Yuan, and B. Sunden, “SOFC cell design optimization using the finite element method based CFD approach,” Fuel Cells, vol. 14, no. 2, pp. 177–188, 2014. DOI: 10.1002/fuce.201300160.
  • I. Khazaee, and A. Rava, “Numerical simulations of the performance of solid oxide fuel cell with different flow channel geometries,” Energy, vol. 119, pp. 235–244, 2017. DOI: 10.1016/j.energy.2016.12.074.
  • V. A. Danilov, and M. O. Tade, “A CFD-based model of a planar SOFC for anode flow field design,” Int. J. Hydrogen Energy, vol. 34, no. 21, pp. 8998–9006, 2009. DOI: 10.1016/j.ijhydene.2009.08.073.
  • M. Canavar, and B. Timurkutluk, “Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells,” J. Power Sources, vol. 346, pp. 49–55, 2017. DOI: 10.1016/j.jpowsour.2017.02.020.
  • M. Saied, K. Ahmed, M. Nemat-Alla, M. Ahmed, and M. Ei-Sebaie, “Performance study of solid oxide fuel cell with various flow field designs: Numerical study,” Int. J. Hydrogen Energy, vol. 43, no. 45, pp. 20931–20946, 2018. DOI: 10.1016/j.ijhydene.2018.09.034.
  • Q. W. Shen, L. N. Sun, and B. W. Wang, “Numerical simulation of the effects of obstacles in gas flow fields of a solid oxide fuel cell,” Int. J. Electrochem. Sci., vol. 14, pp. 1698–1712, 2019. DOI: 10.20964/2019.02.11.
  • C. Yang, G. G. Yang, D. T. Yue, J. L. Yuan, and B. Sunden, “Computational fluid dynamics model development on transport phenomena coupling with reactions in intermediate temperature solid oxide fuel cells,” J. Renew. Sustain. Energy, vol. 5, no. 2, pp. 021420, 2013. DOI: 10.1063/1.4798789.
  • M. Ni, Z. P. Shao, and K. Y. Chan, “Modeling of proton-conducting solid oxide fuel cells fueled with syngas,” Energies, vol. 7, no. 7, pp. 4381–4396, 2014. DOI: 10.3390/en7074381.
  • V. Menon, A. Banerjee, J. Dailly, and O. Deutschmann, “Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming,” Appl. Energy, vol. 149, pp. 161–175, 2015. DOI: 10.1016/j.apenergy.2015.03.037.
  • A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, “Steady state and transient thermal stress analysis in planar solid oxide fuel cells,” J. Power Sources, vol. 145, no. 2, pp. 463–469, 2005. DOI: 10.1016/j.jpowsour.2004.11.073.
  • S. Zeng et al., “Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity,” Int. J. Hydrogen Energy, vol. 42, no. 31, pp. 20239–20248, 2017. DOI: 10.1016/j.ijhydene.2017.05.189.
  • X. Fang, J. Zhu, and Z. Lin, “Effects of electrode composition and thickness on the mechanical performance of a solid oxide fuel cell,” Energies, vol. 11, no. 7, pp. 1735, 2018. DOI: 10.3390/en11071735.
  • H. Mahcene, H. B. Moussa, H. Bouguettaia, D. Bechki, S. Babay, and M. S. Meftah, “Study of species, temperature distributions and the solid oxide fuel cells performance in a 2-D model,” Int. J. Hydrogen Energy, vol. 36, no. 6, pp. 4244–4252, 2011. DOI: 10.1016/j.ijhydene.2010.07.075.
  • A. Yahya, R. Rabhi, H. Dhahri, and K. Slimi, “Numerical simulation of temperature distribution in a planar solid oxide fuel cell using lattice Boltzmann method,” Powder Technol., vol. 338, pp. 402–415, 2018. DOI: 10.1016/j.powtec.2018.07.060.
  • J. M. Park, D. Y. Kim, J. D. Baek, Y. Yoon, P. Su, and S. Lee, “Effect of electrolyte thickness on electrochemical reactions and thermo-fluidic characteristics inside a SOFC unit cell,” Energies, vol. 11, no. 3, pp. 473, 2018. DOI: 10.3390/en11030473.
  • S. Lee et al., “The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations,” Int. J. Heat Mass Transf., vol. 97, pp. 77–93, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.001.
  • Z. Zhang et al., “Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC,” Energies, vol. 7, no. 1, pp. 80–98, 2013. DOI: 10.3390/en7010080.