Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 6
169
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Lattice-Boltzmann simulation of induced cavitation in protruding structure

, , &
Pages 465-478 | Received 05 Mar 2019, Accepted 25 Jun 2019, Published online: 17 Jul 2019

References

  • B. Schneider et al., “Cavitation enhanced heat transfer in microchannels,” Trans. ASME, J. Heat Transf., vol. 128, no. 12, pp. 1293–1301, 2006. DOI: 10.1115/1.2349505.
  • M. De Giorgi, A. Ficarella, and M. Tarantino, “Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization,” Int. J. Heat Fluid Flow, vol. 39, pp. 160–172, 2013. DOI: 10.1016/j.ijheatfluidflow.2012.11.002.
  • A. Zhang, Y. Wang, D. Sun, S. Yu, B. Yu, and Y. Li, “Development of a VOF + LS + SPP method based on FLUENT for simulating bubble behaviors in the electric field,” Numer. Heat Transf., Part B: Fund., vol. 71, no. 2, pp. 186–201, 2017. DOI: 10.1080/10407790.2016.1265308.
  • E. Ezzatneshan, “Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method,” Phys. Fluids, vol. 29, no. 11, pp. 113304, 2017. DOI: 10.1063/1.4990876.
  • G. Falcucci, E. Jannelli, S. Ubertini, and G. Bella, “Direct numerical simulation of flow induced cavitation in orifices,” SAE Int. J. Fuels Lubricants, vol. 6, no. 3, pp. 915–921, 2013. DOI: 10.4271/2013-24-0005.
  • G. Falcucci, E. Jannelli, S. Ubertini, and S. Succi, “Direct numerical evidence of stress-induced cavitation,” J. Fluid Mech., vol. 728, pp. 362–375, 2013. DOI: 10.1017/jfm.2013.271.
  • G. Falcucci, S. Ubertini, G. Bella, and S. Succi, “Lattice Boltzmann simulation of cavitating flows,” Commun. Comput. Phys., vol. 13, no. 3, pp. 685–695, 2013. DOI: 10.4208/cicp.291011.270112s.
  • G. Kähler, F. Bonelli, G. Gonnella, and A. Lamura, “Cavitation inception of a van der Waals fluid at a sack-wall obstacle,” Phys. Fluids, vol. 27, no. 12, pp. 123307, 2015. DOI: 10.1063/1.4937595.
  • R. Sadeghi and M. Shadloo, “Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method,” Numer. Heat Transf., Part A: Applicat., vol. 71, no. 5, pp. 560–574, 2017. DOI: 10.1080/10407782.2016.1277936.
  • M. R. Swift, E. Orlandini, W. Osborn, and J. Yeomans, “Lattice Boltzmann simulations of liquid-gas and binary fluid systems,” Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Top., vol. 54, no. 5, pp. 5041, 1996.
  • M. R. Swift, W. Osborn, and J. Yeomans, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett., vol. 75, no. 5, pp. 830 1995. DOI: 10.1103/PhysRevLett.75.830.
  • X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E, vol. 47, no. 3, pp. 1815, 1993. DOI: 10.1103/PhysRevE.47.1815.
  • X. Shan and G. Doolen, “Multicomponent lattice-Boltzmann model with interparticle interaction,” J. Stat. Phys., vol. 81, no. 1–2, pp. 379–393, 1995. DOI: 10.1007/BF02179985.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, pp. 042101, 2006. DOI: 10.1063/1.2187070.
  • L. Chen, Q. Kang, Y. Mu, Y.-L. He, and W.-Q. Tao, “A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications,” Int. J. Heat Mass Transf., vol. 76, pp. 210–236, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.032.
  • Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, “Lattice Boltzmann methods for multiphase flow and phase-change heat transfer,” Progr. Energy Combust. Sci., vol. 52, pp. 62–105, 2016. DOI: 10.1016/j.pecs.2015.10.001.
  • M. Sbragaglia and X. Shan, “Consistent pseudopotential interactions in lattice Boltzmann models,” Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 84, no. 3 Pt 2, pp. 036703, 2011. DOI: 10.1103/PhysRevE.84.036703.
  • Q. Li, K. Luo, and X. Li, “Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows,” Phys. Rev. E, vol. 86, no. 1, pp. 016709, 2012. DOI: 10.1103/PhysRevE.86.016709.
  • Q. Li, K. Luo, and X. Li, “Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model,” Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 87, no. 5, pp. 053301 2013. DOI: 10.1103/PhysRevE.87.053301.
  • W.-Z. Fang, L. Chen, Q.-J. Kang, and W.-Q. Tao, “Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio,” int. J. Therm. Sci., vol. 114, pp. 172–183, 2017. DOI: 10.1016/j.ijthermalsci.2016.12.017.
  • T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen, The Lattice Boltzmann Method. New York, NY, USA: Springer International Publishing, 2017.
  • H. Huang, M. Sukop, and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application. Hoboken, NJ, USA: John Wiley & Sons, 2015.
  • L. Li, X. Jia, and Y. Liu, “Modified outlet boundary condition schemes for large density ratio Lattice Boltzmann models,” Trans. ASME, J. Heat Transf. , vol. 139, no. 5, pp. 052003, 2017. DOI: 10.1115/1.4036001.
  • R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, “Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle,” Phys. Rev. E, vol. 74, no. 2, pp. 021509, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.