Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 7
365
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of thermal and hydraulic performance in novel oblique geometry using nanofluid

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 533-551 | Received 11 Apr 2019, Accepted 08 Jul 2019, Published online: 24 Jul 2019

References

  • S. G. Kandlikar, “High flux heat removal with microchannels-a roadmap of challenges and opportunities,” Heat Transfer Eng., vol. 26, no. 8, pp. 5–14, 2005. DOI:10.1080/01457630591003655.
  • R. L. Webb, and N. H. Kim, Principles of Enhanced Heat Transfer. New York: Taylor & Francis, 2005, pp. 19–20, 100–109.
  • G. E. Moore, “Cramming More Components onto Integrated Circuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, 1998. DOI:10.1109/JPROC.1998.658762.
  • W. Peng, L. Jizu, B. Minli, W. Yuyan, H. Chengzhi, and Z. Liang, “Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery,” Numer. Heat Transfer, Part A: Appl., vol. 65, no. 4, pp. 378–400, 2014. DOI:10.1080/10407782.2013.832071.
  • L. Biswal, S. Chakraborty, and S. K. Som, “Design and optimization of single-phase liquid cooled microchannel heat sink,” IEEE Trans. Compon. Packag. Technol., vol. 32, no. 4, pp. 876–886, 2009. DOI:10.1109/TCAPT.2009.2025598.
  • S. G. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, 2005, Heat Transfer and Fluid Flow in Minichannels and Microchannels. Oxford: Elsevier.
  • D. B. Tuckerman, and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett, vol. 2, no. 5, pp. 126–129, 1981. DOI:10.1109/EDL.1981.25367.
  • Y.-T. Yang, Y.-H. Wang, and B.-Y. Huang, “Numerical optimization for nanofluid flow in microchannels using entropy generation minimization,” Numer. Heat Transfer, Part A Appl., vol. 67, no. 5, pp. 571–588, 2015. DOI:10.1080/10407782.2014.937282.
  • H. El Mghari, H. Louahlia-Gualous, and E. Lepinasse, “Numerical study of nanofluid condensation heat transfer in a square microchannel,” Numer. Heat Transfer, Part A Appl., vol. 68, no. 11, pp. 1242–1265, 2015. DOI:10.1080/10407782.2015.1037178.
  • S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Developments and Applications of Non-Newtonian Flows. D. A. Singer, H. P. Wang, eds., FED231, New York: ASME, 1995.
  • Y. Chen, and P. Cheng, “Heat transfer and pressure drop in fractal tree-shaped microchannel nets,” Int. J. Heat Mass Transfer, vol. 45, no. 13, pp. 2643–2648, 2002. DOI:10.1016/S0017-9310(02)00013-3.
  • J. Li, and G. P. Peterson, “3-dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow,” Int. J. Heat Mass Transfer, vol. 50, no. 15–16, pp. 2895–2904, 2007. DOI:10.1016/j.ijheatmasstransfer.2007.01.019.
  • J. Koo, and C. Kleinstreuer, “Laminar nanofluid flow in microheat-sinks,” Int. J. Heat Mass Transfer, vol. 48, no. 13, pp. 2652–2661, 2005. DOI:10.1016/j.ijheatmasstransfer.2005.01.029.
  • R. Chein, and G. Huang, “Analysis of microchannel heat sink performance using nanofluids,” Appl. Thermal Eng., vol. 25, no. 17-18, pp. 3104–3114, 2005. DOI:10.1016/j.applthermaleng.2005.03.008.
  • J. Lee, and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer, vol. 50, no. 3–4, pp. 452–463, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.08.001.
  • X. Wu, h Wu, and P. Cheng, “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels,” J. Micromech. Microeng., vol. 19, no. 10, pp. 105020, 2009. DOI:10.1088/0960-1317/19/10/105020.
  • D. Ansari, and K. Kim, “Hotspot management using a hybrid heat sink with stepped pin-fins,” Numer. Heat Transfer, Part A Appl., vol. 75, no. 6, pp. 359–380, 2019. DOI:10.1080/10407782.2019.1599272.
  • J. Y. Jung, H. S. Oh, and H. Y. Kwak, “Forced Convective Heat Transfer of Nanofluids in Microchannels,” Int. J. Heat Mass Transfer, vol. 52, no. 1–2, pp. 466–472, 2009. DOI:10.1016/j.ijheatmasstransfer.2008.03.033.
  • C. J. Ho, L. C. Wei, and Z. W. Li, “An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid,” Appl. Thermal Eng., vol. 30, no. 2–3, pp. 96–103, 2010. DOI:10.1016/j.applthermaleng.2009.07.003.
  • W. Duangthongsuk, and S. Wongwises, “A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations,” Exp. Thermal Fluid Sci., vol. 69, pp. 111–118, 2015. DOI:10.1016/j.expthermflusci.2015.07.019.
  • B. Rimbault, C. T. Nguyen, and N. Galanis, “Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink,” Int. J. Thermal Sci., vol. 84, pp. 275–292, 2014. DOI:10.1016/j.ijthermalsci.2014.05.025.
  • P. K. Singh, P. V. Harikrishna, T. Sundararajan, and S. K. Das, “Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels,” Exp. Thermal Fluid Sci., vol. 42, pp. 174–186, 2012. DOI:10.1016/j.expthermflusci.2012.05.004.
  • Y. Li, G. Xia, Y. Jia, D. Ma, B. Cai, and J. Wang, “Effect of geometric configuration on the laminar flow and heat transfer in microchannel heat sinks with cavities and fins,” Numer. Heat Transfer, Part A Appl., vol. 71, no. 5, pp. 528–546, 2017. DOI:10.1080/10407782.2016.1277940.
  • Y. Wang, P. Wang, S. Yoon, Y. Yu, and M. Bai, “Characteristics of flow and heat transfer of nanofluids under laminar states,” Numer. Heat Transfer Part A Appl., vol. 73, no. 1, pp. 1–16, 2018. DOI:10.1080/10407782.2017.1420298.
  • Lee, Y. J. Lee, P. S. Chou, and S. K. Enhanced Microchannel Heat Sinks Using Oblique Fins,” Proceeding of 2009 ASME InterPACK, Paper No. IPACK2009-89059. 2009.
  • Y. J. Lee, P. S. Lee, and S. K. Chou, “Enhanced thermal transport in microchannel using oblique fins,” J. Heat Transfer, vol. 134, no. 10, pp. 101901, 2012. DOI:10.1115/1.4006843.
  • Y. J. Lee, P. K. Singh, and P. S. Lee, “Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study,” Int. J. Heat Mass Transfer, vol. 81, pp. 325–336, 2015. DOI:10.1016/j.ijheatmasstransfer.2014.10.018.
  • N. Mou, Y. J. Lee, P. S. Lee, P. K. Singh, and S. A. Khan, “Investigations on the influence of flow migration on flow and heat transfer in oblique fin microchannel array,” Trans. ASME J. Heat Transf., vol. 138, no. 10, pp. 102403, 2016. DOI:10.1115/1.4033540.
  • Y. Fan, P. S. Lee, and B. W. Chua, “Investigation on the influence of edge effect on flow and temperature uniformities in cylindrical oblique-finned minichannel array,” Int. J. Heat Mass Transfer, vol. 70, pp. 651–663, 2014. DOI:10.1016/j.ijheatmasstransfer.2013.11.072.
  • M. Law, O. B. Kanargi, and P. S. Lee, “Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels,” Int. J. Heat Mass Transf., vol. 100, pp. 646–660, 2016. pp DOI:10.1016/j.ijheatmasstransfer.2016.04.077.
  • O. B. Kanargi, P. S. Lee, and C. Yap, “A numerical and experimental investigation of heat transfer and fluid flow characteristics of an air-cooled oblique-finned heat sink,” Int. J. Heat Mass Transf., vol. 116, pp. 393–416, 2018. DOI:10.1016/j.ijheatmasstransfer.2017.09.013.
  • I. A. Ghani, N. Kamaruzaman, and N. A. C. Sidik, “Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs,” Int. J. Heat Mass Transf., vol. 108, pp. 1969–1981, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.01.046.
  • ANSYS Fluent Inc. FLUENT 16 User’s Guide, Lebanon USA: Fluent Inc., 2016.
  • R. L. Hamilton, and O. K. Crosser, “Thermal conductivity of heterogeneous two component systems,” Ind. Eng. Chem. Fundamentals, vol. 1, pp. 187–191, 1962. DOI:10.1021/i160003a005.
  • Y. Feng, and C. Kleinstreuer, “Nanofluid convective heat transfer in a parallel-disk system,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4619–4628, 2010. DOI:10.1016/j.ijheatmasstransfer.2010.06.031.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere. New York: Hemisphere Publishing Corporation, 1980.
  • P. S. Lee, and S. V. Garimella, “Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios,” Int. J. Heat Mass Transfer, vol. 49, no. 17–18, pp. 3060–3067, 2006. DOI:10.1016/j.ijheatmasstransfer.2006.02.011.
  • H. Martin, “The Generalized Leveque Equation (GLE) and its use to predict heat and mass transfer from fluid friction,” Heat Transfer, vol. 3, pp. 135–140, 2002.
  • N. C. DeJong, and A. M. Jacobi, “Flow, heat transfer, and pressure drop in the near-wall region of louvered-fin arrays,” Exp. Thermal Fluid Sci., vol. 27, no. 3, pp. 237–250, 2003. DOI:10.1016/S0894-1777(02)00224-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.