Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 2
316
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of indoor airflow around thermal manikins by multiple-relaxation-time lattice Boltzmann method with LES approaches

, , , , , , & show all
Pages 215-231 | Received 24 Jun 2019, Accepted 23 Oct 2019, Published online: 03 Dec 2019

References

  • P. Wargocki, et al., “Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads,” Indoor Air, vol. 9, no. 3, pp. 165, 1999. DOI: 10.1111/j.1600-0668.1999.t01-1-00003.x.
  • D. Zukowska, A. Melikov, and Z. Popiolek, “Impact of personal factors and furniture arrangement on the thermal plume above a sitting occupant,” Build. Environ., vol. 49, no. 3, pp. 104–116, 2012. DOI: 10.1016/j.buildenv.2011.09.015.
  • N. P. Gao, and J. L. Niu, “CFD Study of the thermal environment around a human body: a review,” Indoor Built Environment, vol. 14, no. 1, pp. 5–16, 2005. DOI: 10.1177/1420326X05050132.
  • P. O. Fanger, et al., “Comfort limits for asymmetric thermal radiation,” Energy Build., vol. 8, no. 3, pp. 225–236, 1985. DOI: 10.1016/0378-7788(85)90006-4.
  • D. Licina, et al., “Experimental investigation of the human convective boundary layer in a quiescent indoor environment,” Build. Environ., vol. 75, no. 1, pp. 79–91, 2014. DOI: 10.1016/j.buildenv.2014.01.016.
  • N. Gao, and J. Niu, “CFD study on micro-environment around human body and personalized ventilation,” Build. Environ., vol. 39, no. 7, pp. 795–805, 2004. DOI: 10.1016/j.buildenv.2004.01.026.
  • C. Topp, P. V. Nielsen, and D. N. Sørensen, “Application of computer simulated persons in indoor environmental modeling,” ASHRAE trans., vol. 108, no. 2, pp. 1084–1089, 2002.
  • C. Topp, “Influence of geometry of a computer simulated person on contaminant distribution and personal exposure,” Roomvent, vol. 1, pp. 265–268, 2002.
  • S. A. Keshavarz, M. Salmanzadeh, and G. Ahmadi, “Computational modeling of time resolved exposure level analysis of a heated breathing manikin with rotation in a room,” j. Aerosol sci., vol. 103, pp. 117–131, 2017. DOI: 10.1016/j.jaerosci.2016.09.005.
  • N. Martinho, A. Lopes, and M. G. D. Silva, “Evaluation of errors on the CFD computation of air flow and heat transfer around the human body,” Building Environment, vol. 58, pp. 58–69, 2012. DOI: 10.1016/j.buildenv.2012.06.018.
  • J. M. Yeomans, “Mesoscale simulations lattice Boltzmann and particle algorithms,” Phys. A, vol. 369, no. 1, pp. 159–184, 2006. DOI: 10.1016/j.physa.2006.04.011.
  • Z. Li, M. Yang, and Y. Zhang, “Numerical simulation of melting problems using the lattice Boltzmann method with the interfacial tracking method,” Numerical Heat Transfer, Part A: Applicat., vol. 68, no. 11, pp. 1175–1197, 2015. DOI: 10.1080/10407782.2015.1037126.
  • M. Hussain, and W.-Q. Tao, “Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method,” Numer. Heat Transf., A: Appl., vol. 74, no. 6, pp. 1285–1300, 2018. DOI: 10.1080/10407782.2018.1523599.
  • Q. Ren, and C. L. Chan, “Numerical simulation of a 2D electrothermal pump by lattice Boltzmann method on GPU,” Numer. Heat Transf., A: Appl., vol. 69, no. 7, pp. 677–693, 2016. DOI: 10.1080/10407782.2015.1090826.
  • S. Nataraj, K. S. Reddy, and S. P. Thampi, “Lattice Boltzmann simulations of a radiatively participating fluid in Rayleigh–Benard convection,” Numer. Heat Transf., A: Appl., vol. 72, no. 4, pp. 313–329, 2017. DOI: 10.1080/10407782.2017.1376936.
  • S. Chen, and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” annu. rev. Fluid Mechanics, vol. 30, no. 1, pp. 329–364, 1998. DOI: 10.1146/annurev.fluid.30.1.329.
  • X. He, and L. S. Luo, “A priori derivation of the lattice Boltzmann equation,” Phys. Rev. E, vol. 55, no. 6, pp. R6333–R6336, 1997. DOI: 10.1103/PhysRevE.55.R6333.
  • J. Lätt, B. Chopard, S. Succi, and F. Toschi, “Numerical analysis of the averaged flow field in a turbulent lattice Boltzmann simulation,” Physica A, vol. 362, no. 1, pp. 6–10, 2006. DOI: 10.1016/j.physa.2005.09.016.
  • H. Yu, L.-S. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using an MRT lattice Boltzmann model,” Comput. Fluids, vol. 35, no. 8-9, pp. 957–965, 2006. DOI: 10.1016/j.compfluid.2005.04.009.
  • Y. Qian, D. d’HumìEres, and P. Lallemand, “Lattice BGK models for Navier–Stokes equation,” Europhys. Lett, vol. 17, no. 6, pp. 479–484, 1992. DOI: 10.1209/0295-5075/17/6/001.
  • P. Lallemand, and L.-S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability,” Phys. Rev. E, vol. 61, no. 6, pp. 6546–6562, 2000. DOI: 10.1103/PhysRevE.61.6546.
  • Y. Chen, H. Ohashi, and M. Akiyama, “Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations,” Phys. Rev. E Statist. Phys. Plasmas Fluids Related Interdiscip Top., vol. 50, no. 4, pp. 2776, 1994. DOI: 10.1103/PhysRevE.50.2776.
  • P. Lallemand, and L. S. Luo, “Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions,” Physical Rev. E Statis. Nonlinear Soft Matter Phys., vol. 68, no. 2, pp. 036706, 2003. DOI: 10.1103/PhysRevE.68.036706.
  • Z. Guo, B. Shi, and C. Zheng, “A coupled lattice BGK model for the Boussinesq equations,” Int. J. Numer. Methods Fluids, vol. 39, no. 4, pp. 325–342, 2002. DOI: 10.1002/fld.337.
  • G. I. D'Humières, et al., “Multiple-relaxation-time lattice Boltzmann models in three dimensions,” Philosoph. Trans., vol. 360, no. 1792, pp. 437, 2002. DOI: 10.1098/rsta.2001.0955.
  • H. Yoshida, and M. Nagaoka, “Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation,” Comput. Phys., vol. 229, no. 20, pp. 7774–7795, 2010. DOI: 10.1016/j.jcp.2010.06.037.
  • F. Ducros, F. Nicoud, and T. Poinsot, “Wall-adapting local Eddy-viscosity models simulations complex geometries,” Numer. Methods Fluid Dyn., pp. 293–300, 1998.
  • R. Verberg, and A. J. Ladd, “Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions.[J],” Phys. Rev. E Statist. Nonlinear Soft Matter Phys., vol. 65, pp. 2–016701, 2002. (DOI: 10.1103/PhysRevE.65.016701.
  • R. Verberg, and A. J. C. Ladd, “Ladd Lattice-Boltzmann Model with Sub-Grid-Scale Boundary Conditions,” Phys. Rev. Lett, vol. 84, no. 10, pp. 2148, 2000.
  • Y. Yan, et al., “Evaluation of manikin simplification methods for CFD simulations in occupied indoor environments,” Energy Build., vol. 127, pp. 611–626, 2016. DOI: 10.1016/j.enbuild.2016.06.030.
  • P. V. Nielsen, “Benchmarks test for a computer simulated person,” Indoor Air, vol. 14, no. 7, pp. 144–156, 2003.
  • N. S. Dan, and L. K. Voigt, “Modeling flow and heat transfer around a seated human body by computational dynamics,” Build. Environ., vol. 38, no. 6, pp. 753–762, 2003. DOI: 10.1016/S0360-1323(03)00027-1.
  • T. H. Shih, L. A. Povinelli, N. S. Liu, M. G. Potapczuk, and J. L. Lumley, (1999). “A generalized wall function,” NASA Technical Report, NASA Glenn Research Center, Cleveland, OH.
  • D. Yu, R. Mei, and S. Wei, “A multi‐block lattice boltzmann method for viscous fluid flows,” Int. J. Numer. Methods Fluids, vol. 39, no. 2, pp. 99–120, 2002. DOI: 10.1002/fld.280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.