Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 5
197
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Integral transform analysis of convective heat transfer within wavy walls channels

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 460-481 | Received 20 Sep 2019, Accepted 26 Dec 2019, Published online: 04 Feb 2020

References

  • T. Nishimura, S. Murakami, S. Arakawa, and Y. Kawamura, “Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow,” Int. J. Heat Mass Transf., vol. 33, pp. 835–845, 1990. DOI: 10.1016/0017-9310(90)90067-5.
  • T. A. Rush, T. A. Newell, and A. M. Jacobi, “An experimental study of flow and heat transfer in sinusoidal wavy passages,” Int. J. Heat Mass Transf., vol. 42, no. 9, pp. 1541–1553, 1999. DOI: 10.1016/S0017-9310(98)00264-6.
  • G. Wang and S. P. Vanka, “Convective heat transfer in periodic wavy passages,” Int. J. Heat Mass Transf., vol. 38, no. 17, pp. 3219–3230, 1995. DOI: 10.1016/0017-9310(95)00051-A.
  • S. Pati, S. K. Mehta, and A. Borah, “Numerical investigation of thermo-hydraulic transport characteristics in wavy channels: comparison between raccoon and serpentine channels,” Int. Commun. Heat Mass Transf., vol. 88, pp. 171–176, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.09.001.
  • C. C. Wang and C. K. Chen, “Forced convection in wavy-wall channel,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2587–2595, 2002. DOI: 10.1016/S0017-9310(01)00335-0.
  • A. G. Ramgadia and A. K. Saha, “Numerical study of fully developed unsteady flow and heat transfer in asymmetric wavy channels,” Int. J. Heat Mass Transf., vol. 102, pp. 98–112, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.131.
  • A. G. Ramgadia and A. K. Saha, “Fully developed flow and heat transfer characteristics in a wavy passage: effect of amplitude of waviness and Reynolds number,” Int. J. Heat Mass Transf., vol. 55, no. 9–10, pp. 2494–2509, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.01.010.
  • A. G. Ramgadia and A. K. Saha, “Numerical study of fully developed flow and heat transfer in a wavy passage,” Int. J. Therm. Sci., vol. 67, pp. 152–166, 2013. DOI: 10.1016/j.ijthermalsci.2012.12.005.
  • K. M. Lisboa et al., “Mass transport enhancement in redox flow batteries with corrugated fluidic networks,” J. Power Sources, vol. 359, pp. 322–331, 2017. DOI: 10.1016/j.jpowsour.2017.05.038.
  • K. M. Lisboa and R. M. Cotta, “Analysis of the mass transport in corrugated membraneless flow batteries,” Appl. Math. Model., vol. 77, pp. 1512–1530, 2020. DOI: 10.1016/j.apm.2019.09.001.
  • H. M. S. Bahaidarah, N. K. Anand, and H. C. Chen, “Numerical study of heat and momentum transfer in channels with wavy walls,” Numer. Heat Transf., A Appl., vol. 47, no. 5, pp. 417–439, 2005. DOI: 10.1080/10407780590891218.
  • H. M. S. Bahaidarah, “A numerical study of fluid flow and heat transfer characteristics in channels with staggered wavy walls,” Numer. Heat Transf. A Appl., vol. 51, no. 9, pp. 877–898, 2007. DOI: 10.1080/10407780600939644.
  • M. A. Ahmed, M. Z. Yusoff, and N. H. Shuaib, “Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid,” Int. Commun. Heat Mass Transf., vol. 42, pp. 69–74, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.12.012.
  • P. M. M. Krishna, M. Deepu, and S. R. Shine, “Numerical investigation of wavy microchannels with rectangular cross section,” J. Enhanc. Heat Transf., vol. 25, no. 4–5, pp. 293–313, 2018. DOI: 10.1615/JEnhHeatTransf.2018021403.
  • Y. Sui, C. J. Teo, P. S. Lee, Y. T. Chew, and C. Shu, “Fluid flow and heat transfer in wavy microchannels,” Int. J. Heat Mass Transf., vol. 53, no. 13–14, pp. 2760–2772, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.022.
  • P. Mayeli, H. Hesami, and M. H. D. F. Moghaddam, “Numerical investigation of the MHD forced convection and entropy generation in a straight duct with sinusoidal walls containing water-Al2O3 nanofluid,” Numer. Heat Transf. A Appl., vol. 71, no. 12, pp. 1235–1250, 2017. DOI: 10.1080/10407782.2017.1346998.
  • A. Albojamal, H. Hamzah, A. Haghighi, and K. Vafai, “Analysis of nanofluid transport through a wavy channel,” Numer. Heat Transf. A Appl., vol. 72, no. 12, pp. 869–890, 2017. DOI: 10.1080/10407782.2017.1412679.
  • A. Kumar, S. Nath, and D. Bhanja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transf. A Appl., vol. 73, no. 7, pp. 429–445, 2018. DOI: 10.1080/10407782.2018.1448611.
  • P. Mayeli, H. Hesami, H. Besharati-Foumani, and M. Niajalili, “Al2O3-Water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Numer. Heat Transf. A Appl., vol. 73, no. 9, pp. 604–623, 2018. DOI: 10.1080/10407782.2018.1461494.
  • A. T. Al-Sammarraie, M. Al-Jethelah, M. R. Salimpour, and K. Vafai, “Nanofluids transport through a novel concave/convex convergent pipe,” Numer. Heat Transf. A Appl., vol. 75, no. 2, pp. 91–109, 2019. DOI: 10.1080/10407782.2019.1579517.
  • M. Hatami, A. Kheirkhah, H. Ghanbari-rad, and D. Jing, “Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes,” Case Stud. Therm. Eng., vol. 13, pp. 1–10, 2019. DOI: 10.1016/j.csite.2018.100368.
  • Y. T. Yang, H. W. Tang, and S. J. Jian, “Numerical simulation and optimization of turbulent nanofluids in a three-dimensional wavy channel,” Numer. Heat Transf. A Appl., vol. 69, no. 10, pp. 1169–1185, 2016. DOI: 10.1080/10407782.2015.1125729.
  • Y. T. Yang, H. W. Tang, B. Y. Zeng, and M. H. Jian, “Numerical simulation and optimization of turbulent nanofluids in a three-dimensional arc rib-grooved channel,” Numer. Heat Transf. A Appl., vol. 70, no. 8, pp. 831–846, 2016. DOI: 10.1080/10407782.2016.1214513.
  • M. Dehghani, “Entropy generation analysis of nanofluid forced convection in MHD plane diffuser,” Numer. Heat Transf. A Appl., vol. 75, no. 9, pp. 627–645, 2019. DOI: 10.1080/10407782.2019.1608772.
  • R. M. Cotta, Integral Transforms in Computational Heat and Fluid Flow. Boca Raton, FL, USA: CRC Press, 1993.
  • R. M. Cotta and M. D. Mikhailov, “Hybrid methods and symbolic computations,” in Handbook of Numerical Heat Transfer, 2nd ed., Chap. 16, W. J. Minkowycz, E. M. Sparrow, and J. Y. Murthy, Eds. New York, NY, USA: Wiley, 2006, pp.493–522.
  • R. M. Cotta et al., “Analytical methods in heat transfer,” in Handbook of Thermal Science and Engineering, Chap. 1, F. A. Kulacki, Eds. Switzerland: Springer International Publishing, 2018. DOI: 10.1007/978-3-319-32003-8_2-1.
  • J. S. Pérez Guerrero and R. M. Cotta, “Lid-driven cavity flow problem in streamfunction-only formulation,” Int. J. Numer. Methods Fluids, vol. 15, no. 4, pp. 399–409, 1992. DOI: 10.1002/fld.1650150403.
  • J. S. Pérez Guerrero and R. M. Cotta, “Integral transform solution of developing laminar duct flow in Navier-Stokes formulation,” Int. J. Numer. Methods Fluids, vol. 20, no. 11, pp. 1203–1213, 1995. DOI: 10.1002/fld.1650201102.
  • J. S. Pérez Guerrero, J. N. N. Quaresma, and R. M. Cotta, “Simulation of laminar flow inside ducts of irregular geometry using integral transforms,” Comput. Mech., vol. 25, no. 4, pp. 413–420, 2000. DOI: 10.1007/s004660050488.
  • F. A. Pontes, E. N. Macêdo, C. da, S. Batista, J. A. de Lima, and J. N. N. Quaresma, “Hybrid solutions obtained via integral transforms for magnetohydrodynamic flow with heat transfer in parallel-plate channels,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 7, pp. 1474–1505, 2018. DOI: 10.1108/HFF-02-2017-0076.
  • K. M. Lisboa and R. M. Cotta, “Hybrid integral transforms for flow development in ducts partially filled with porous media,” Proc. R. Soc. A, vol. 474, no. 2209, pp. 20170637, 2018. DOI: 10.1098/rspa.2017.0637.
  • K. M. Lisboa and R. M. Cotta, “On the mass transport in membraneless flow batteries with flow-by configuration,” Int. J. Heat Mass Transf., vol. 122, pp. 954–966, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.002.
  • K. M. Lisboa, J. Su, and R. M. Cotta, “Single domain integral transform analysis of natural convection in cavities partially filled with heat generating porous medium,” Numer. Heat Transf. A Appl., vol. 74, no. 3, pp. 1068–1086, 2018. DOI: 10.1080/10407782.2018.1511141.
  • K. M. Lisboa, J. Su, and R. M. Cotta, “Vector eigenfunction expansion in the integral transform solution of transient natural convection,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 8, pp. 2684–2708, 2019. DOI: 10.1108/HFF-10-2018-0543.
  • R. M. Cotta et al., “A review of hybrid integral transform solutions in fluid flow problems with heat or mass transfer and under Navier-Stokes equations formulations,” Numer. Heat Transf. B Fundam., vol. 76, no. 2, pp. 60–87, 2019. DOI: 10.1080/10407790.2019.1642715.
  • R. L. Silva, J. N. N. Quaresma, C. A. C. Santos, and R. M. Cotta, “Integral transforms solution for flow development in wavy wall ducts,” Int. J. Numer. Methods Heat Fluid Flow, vol. 21, pp. 219–243, 2010. DOI: 10.1108/09615531111105416.
  • F. V. Castellões, J. N. N. Quaresma, and R. M. Cotta, “Convective heat transfer enhancement in low Reynolds number flows with wavy walls,” Int. J. Heat Mass Transf., vol. 53, no. 9–10, pp. 2022–2034, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.054.
  • R. M. Cotta et al., “Recent advances in computational-analytical integral transforms for convection-diffusion problems,” Heat Mass Transf., vol. 54, no. 8, pp. 2475–2496, 2018. DOI: 10.1007/s00231-017-2186-1.
  • IMSL® Fortran Numerical Library, Version 2018. Boulder, CO, USA: Rogue Wave Software Inc., 2018.
  • S. Wolfram, Mathematica v.11. Champaign, IL: Wolfram Research Inc., 2018.
  • COMSOL Multiphysics® v. 5.2, Stockholm, Sweden: COMSOL AB, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.