Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 5
156
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of a solar energy accumulator based on phase change materials

ORCID Icon, , , &
Pages 443-459 | Received 27 Oct 2019, Accepted 26 Dec 2019, Published online: 21 Jan 2020

References

  • A. E. Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behaviour of indirect solar dryer: nocturnal usage of solar air collector with PCM,” J. Clean. Prod., vol. 148, pp. 37–48, 2017. DOI: 10.1016/j.jclepro.2017.01.149.
  • T. K. Aldoss and M. M. Rahman, “Comparison between the single-PCM and multi-PCM thermal energy storage design,” Energy Convers. Manage., vol. 83, pp. 79–87, 2014. DOI: 10.1016/j.enconman.2014.03.047.
  • A. Reyes, L. Henríquez-Vargas, J. Rivera, and F. Sepúlveda, “Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material,” Renew. Energy, vol. 101, pp. 225–235, 2017. DOI: 10.1016/j.renene.2016.08.057.
  • H. Shmueli, G. Ziskind, and R. Letan, “Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments,” Int. J. Heat Mass Transf., vol. 53, no. 19-20, pp. 4082–4091, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.028.
  • M. D. Muhammad, O. Badr, and H. Yeung, “Validation of a CFD melting and solidification model for phase change in vertical cylinders,” Numer. Heat Transf. Part A: Appl., vol. 68, no. 5, pp. 501–511, 2015. DOI: 10.1080/10407782.2014.994432.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Numer. Heat Transf. Part A Appl., vol. 75, no. 8, pp. 560–577, 2019. DOI: 10.1080/10407782.2019.1606634.
  • L. Katsman, V. Dubovsky, G. Ziskind, and, R. Letan, “Experimental investigation of solid-liquid phase change in cylindrical geometry,” presented at ASME-JSME Thermal Engineering Summer Heat Transfer Conference, ASME/JSME, British Columbia, Canada, July 8–12, 2007.
  • M. Farid, Y. Kim, T. Honda, and A. Kanzawa, “The role of natural convection during melting and solidification of PCM in a vertical cylinder,” Chem. Eng. Commun., vol. 84, no. 1, pp. 43–60, 1989. DOI: 10.1080/00986448908940334.
  • E. M. Sparrow and J. A. Broadbent, “Freezing in a vertical tube,” Trans. ASME J. Heat Transf., vol. 105, no. 2, pp. 217–225, 1983. DOI: 10.1115/1.3245566.
  • A. Reyes, A. Mahn, and F. Vásquez, “Mushrooms dehydration in a hybrid-solar dryer, using a phase change material,” Energy Convers. Manage., vol. 83, pp. 241–248, 2014. DOI: 10.1016/j.enconman.2014.03.077.
  • A. Reyes, J. Vásquez, N. Pailahueque, and A. Mahn, “Effect of drying using solar energy and phase change material on kiwifruit properties,” Drying Technol., vol. 37, no. 2, pp. 232–244, 2019. DOI: 10.1080/07373937.2018.1450268.
  • B. Fortunato, S. M. Camporeale, M. Torresi, and M. Albano. “Simple mathematical model of a thermal storage with PCM,” AASRI Procedia, vol. 2, pp. 241–248, 2012.
  • V. Dermardiros, Y. Chen, and A. K. Athienitis, “Modelling of and active PCM thermal energy storage for control applications,” Energy Procedia, vol. 78, pp. 1690–1695, 2015. DOI: 10.1016/j.egypro.2015.11.261.
  • R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech., vol. 37, no. 1, pp. 239–261, 2005. DOI: 10.1146/annurev.fluid.37.061903.175743.
  • D. Ingram, D. Causon, and C. Mingham, “Developments in Cartesian cut cell methods,” Math. Comput. Simul., vol. 61, no. 3-6, pp. 561–572, 2003. DOI: 10.1016/S0378-4754(02)00107-6.
  • N. Sato, S. Takeuchi, T. Kajishima, M. Inagaki, and N. Horinouchi, “A consistent direct discretization scheme on Cartesian grids for convective and conjugate heat transfer,” J. Comput. Phys., vol. 321, pp. 76–104, 2016. DOI: 10.1016/j.jcp.2016.05.034.
  • M. Berger and M. Aftosmis, “Progress towards a Cartesian cut-cell method for viscous compressible flow,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012. DOI: 10.2514/6.2012-1301.
  • M. Berger, “A note on the stability of cut cells and cell merging,” Appl. Numer. Math., vol. 96, no. C, pp. 180–186, 2015. DOI: 10.1016/j.apnum.2015.05.003.
  • H. S. Udaykumar, W. Shyy, and M. M. Rao, “ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries,” Int. J. Numer. Methods Fluids, vol. 22, no. 8, pp. 691–712, 1996. DOI: 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U.
  • M. Kirkpatrick, S. Armfield, and J. Kent, “A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid,” J. Comput. Phys., vol. 184, no. 1, pp. 1–36, 2003. DOI: 10.1016/S0021-9991(02)00013-X.
  • D. Hartmann, M. Meinke, and W. Schröder, “An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods,” Comput. Fluids, vol. 37, no. 9, pp. 1103–1125, 2008. DOI: 10.1016/j.compfluid.2007.06.007.
  • P. Tucker and Z. Pan, “A Cartesian cut cell method for incompressible viscous flow,” Appl. Math. Model., vol. 24, no. 8-9, pp. 591–606, 2000. DOI: 10.1016/S0307-904X(00)00005-6.
  • K. Abe, T. Kondoh, and Y. Nagano, “A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-I. Flow field calculations,” Int. J. Heat Mass Transf., vol. 37, no. 1, pp. 139–151, 1994. DOI: 10.1016/0017-9310(94)90168-6.
  • A. A. Igci and M. E. Arici, “A comparative study of four low-Reynolds-number k−ϵ turbulence models for periodic fully developed duct flow and heat transfer,” Numer. Heat Transf. Part B Fundam., vol. 69, no. 3, pp. 234–248, 2016.
  • V. R. Voller, C. R. Swaminathan, and B. G. Thomas, “Fixed grid techniques for phase change problems: a review,” Int. J. Numer. Methods Eng., vol. 30, no. 4, pp. 875–898, 1990.
  • W. M. Kays, “Turbulent Prandtl number-where are we?” Trans. ASME J. Heat Transf., vol. 116, no. 2, pp. 284–295, 1994.
  •  L. Henríquez-Vargas, F. Angel, A. Reyes, L. Lackey, and P. Donoso-García, “Effects of an interpolation scheme and the number of slave cells on a cut cell methodology”, Numer Heat Tr A-Appl., in review.
  • S. Takeuchi, T. Tsutsumi, and T. Kajishima, “Effect of temperature gradient within a solid particle on the rotation and oscillation modes in solid-dispersed two-phase flows,” Int. J. Heat Fluid Flow, vol. 43, pp. 15–25, Oct. 2013.
  • L. Henríquez-Vargas, E. Villaroel, J. Gutierrez, and P. Donoso-García, “Implementation of a parallel ADI algorithm on a finite volume GPU-based elementary porous media flow computation,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 10, pp. 3965–3979, Aug. 2017.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. 1st ed. Philadelphia, PA: Hemisphere Publishing Corporation, 1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.