Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 10
1,511
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A numerical study of heat transfer effects and aerodynamic noise reduction in superheated steam flow passing a temperature and pressure regulation valve

, , , &
Pages 873-889 | Received 17 Feb 2020, Accepted 19 Mar 2020, Published online: 10 Apr 2020

References

  • X. Han, Z. Han, W. Zeng, L. Peng, and J. Qian, “Numerical simulation of wet steam transonic condensation flow in the last stage of a steam turbine,” Int. J. Numer. Methods Heat Fluid, vol. 28, no. 10, pp. 2378–2403, 2018. DOI: 10.1108/HFF-10-2017-0415.
  • W. Adamczyk, P. Kozolub, G. Węcel, and A. Ryfa, “Simulations of the PC boiler equipped with complex swirling burners,” In.t J. Numer. Methods Heat Fluid, vol. 24, no. 4, pp. 845–860, 2014. DOI: 10.1108/HFF-02-2013-0067.
  • N. D. Pham et al., “Quality of plant-based food materials and its prediction during intermittent drying,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 8, pp. 1197–1211, 2019. DOI: 10.1080/10408398.2017.1399103.
  • T. Väisänen, P. Kilpeläinen, V. Kitunen, R. Lappalainen, and L. Tomppo, “Effect of steam treatment on the chemical composition of hemp (Cannabis sativa L.) and identification of the extracted carbohydrates and other compounds,” Ind. Crops Prod., vol. 131, pp. 224–233, 2019. DOI: 10.1016/j.indcrop.2019.01.055.
  • J. Tao et al., “An experimental and numerical study of regulating performance and flow loss in a v-port ball valve,” J. Fluids Eng., vol. 142, no. 2, 2020. DOI: 10.1115/1.4044986.
  • J. Y. Qian et al., “Analysis of fouling in six-start spirally corrugated tubes,” Heat Transfer Eng., vol. 40, pp. 1–16, 2019. DOI: 10.1080/01457632.2019.1675246.
  • C. Yang et al., “Heat transfer study of a hybrid smooth and spirally corrugated tube,” Heat Transfer Eng., vol. 1–9, Dec. 2019. DOI: 10.1080/01457632.2019.1699292.
  • J. Qian et al., “A geometric study on shell side heat transfer and flow resistance of a six-start spirally corrugated tube,” Numer. Heat Transfer, Part A, vol. 73, no. 8, pp. 565–582, 2018. DOI: 10.1080/10407782.2018.1459381.
  • L. Luo et al., “Convergence angle and dimple shape effects on the heat transfer characteristics in a rotating dimple-pin fin wedge duct,” Numer. Heat Transfer, Part A, vol. 74, no. 10, pp. 1611–1635, 2018. DOI: 10.1080/10407782.2018.1543920.
  • S. Wang et al., “Heat transfer characteristics of a dimpled/protrusioned pin fin wedge duct with different converging angles for turbine blades,” Numer. Heat Transfer, Part A, vol. 76, no. 5, pp. 369–392, 2019. DOI: 10.1080/10407782.2019.1630235.
  • J. Y. Qian, Z. Wu, Q. K. Zhang, Z. J. Jin, and B. Sundén, “Heat transfer analysis on dimple geometries and arrangements in dimple jacketed heat exchanger,” HFF, vol. 29, no. 8, pp. 2775–2791, 2019. DOI: 10.1108/HFF-12-2018-0792.
  • Z. Cao, Z. Wu, H. Luan, and B. Sundén, “Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts,” Numer. Heat Transfer, Part A, vol. 72, no. 1, pp. 21–39, 2017. DOI: 10.1080/10407782.2017.1353386.
  • T. W. Kim and T. S. Park, “Size effect on compressible flow and heat transfer in microtube with rarefaction and viscous dissipation,” Numer. Heat Transfer, Part A, vol. 76, no. 11, pp. 871–888, 2019. DOI: 10.1080/10407782.2019.1673106.
  • Y. Wang, Y. Hu, Q. Huang, and Y. Cui, “Transient heat transfer study of direct contact condensation of steam in spray cooling water,” Trans. Tianjin Univ., vol. 24, no. 2, pp. 131–143, 2018. DOI: 10.1007/s12209-017-0106-6.
  • A. `, W. Lerch, and R. Heimrath, “Heat pump condenser and desuperheater integrated into a storage tank: model development and comparison with measurements,” Appl. Therm. Eng., vol. 102, pp. 465–475, 2016. DOI: 10.1016/j.applthermaleng.2016.04.010.
  • E. Vahid and G. Mofid, “Two-dimensional modeling of water spray cooling in superheated steam,” Therm. Sci, vol. 12, no. 2, pp. 79–88, 2008.
  • R. Kouhikamali, H. Hesami, and A. Ghavamian, “Convective heat transfer in a mixture of cooling water and superheated steam,” Int. J. Therm. Sci., vol. 60, pp. 205–211, 2012. DOI: 10.1016/j.ijthermalsci.2012.05.012.
  • E. Rahimi, S. Torfeh, and R. Kouhikamali, “Numerical study of counter-current desuperheaters in thermal desalination units,” Desalination, vol. 397, pp. 140–150, 2016. DOI: 10.1016/j.desal.2016.06.028.
  • Z. J. Jin, C. Qiu, C. H. Jiang, J. Y. Wu, and J. Y. Qian, “Effect of valve core shapes on cavitation flow through a sleeve regulating valve,” J. Zhejiang Univ. Sci. A, vol. 21, no. 1, pp. 1–14, 2020. DOI: 10.1631/jzus.A1900528.
  • S. S. Rodrigues and A. C. Marta, “On addressing wind turbine noise with after-market shape blade add-ons,” Renew. Energy, vol. 140, pp. 602–614, 2019. DOI: 10.1016/j.renene.2019.03.056.
  • C. Xu, Y. Mao, and Z. Hu, “Control of cylinder wake flow and noise through a downstream porous treatment,” Aerosp. Sci. Technol., vol. 88, pp. 233–243, 2019. DOI: 10.1016/j.ast.2019.03.027.
  • J. Y. Qian, M. R. Chen, X. L. Liu, and Z. J. Jin, “A numerical investigation of the flow of nanofluids through a micro Tesla valve,” J. Zhejiang Univ. Sci. A, vol. 20, no. 1, pp. 50–60, 2019. DOI: 10.1631/jzus.A1800431.
  • J. Y. Qian, M. R. Chen, Z. X. Gao, and Z. J. Jin, “Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression,” Energy, vol. 179, pp. 647–654, 2019. DOI: 10.1016/j.energy.2019.05.064.
  • L. Li, P. Liu, Y. Xing, and H. Guo, “experimental investigation on the noise reduction method of helical cables for a circular cylinder and tandem cylinders,” Appl. Acoust., vol. 152, pp. 79–87, 2019. DOI: 10.1016/j.apacoust.2019.03.027.
  • A. Bodling and A. Sharma, “Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil,” J. Sound Vib., vol. 453, pp. 314–327, 2019. DOI: 10.1016/j.jsv.2019.02.004.
  • G. Romani and D. Casalino, “Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method,” Aerosp. Sci. Technol., vol. 88, pp. 147–157, 2019. DOI: 10.1016/j.ast.2019.03.029.
  • J. Y. Qian, C. W. Hou, J. Y. Wu, Z. X. Gao, and Z. J. Jin, “Aerodynamics analysis of superheated steam flow through multi-stage perforated plates,” Int. J. Heat Mass Transfer, vol. 141, pp. 48–57, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.061.
  • E. Talay and A. Altinisik, “The effect of door structural stiffness and flexural components to the interior wind noise at elevated vehicle speeds,” Appl. Acoust., vol. 148, pp. 86–96, 2019. DOI: 10.1016/j.apacoust.2018.12.005.
  • L. J. Ayton and P. Chaitanya, “An analytical and experimental investigation of aerofoil–turbulence interaction noise for plates with spanwise-varying leading edges,” J. Fluid Mech., vol. 865, pp. 137–168, 2019. DOI: 10.1017/jfm.2019.78.
  • C. P. Arroyo, T. Leonard, M. Sanjosé, S. Moreau, and F. Duchaine, “Large Eddy simulation of a scale-model turbofan for fan noise source diagnostic,” J. Sound Vib., vol. 445, pp. 64–76, 2019. DOI: 10.1016/j.jsv.2019.01.005.
  • M. Zhang and A. Frendi, “Effect of airfoil leading edge waviness on flow structures and noise,” Int. J. Numer. Methods Heat Fluid, vol. 26, no. 6, pp. 1821–1842, 2016. DOI: 10.1108/HFF-04-2015-0143.
  • A. Frendi and M. Brown, “Flow structures and noise from a supersonic impinging jet,” Int. J. Numer. Methods Heat Fluid, vol. 26, no. 8, pp. 2509–2527, 2016. DOI: 10.1108/HFF-05-2015-0174.
  • G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge, England: Cambridge University Press, 1967.
  • I. Proudman, “The generation of noise by isotropic turbulence,” Proc. R. Soc. A, vol. 214, pp. 119–132, 1952.
  • G. M. Lilley, “The radiated noise from isotropic turbulence revisited,” Theoret. Comput. Fluid Dyn., vol. 6, no. 5–6, pp. 281–301, 1994. DOI: 10.1007/BF00311842.
  • S. Sarkar and M. Y. Hussaini, “Computation of the sound generated by isotropic turbulence,” In NASA Contract Report, Hampton, VA: NASA Langley Research Center, 1993, pp. 93–74.