Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 2
226
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of the heat transfer performance of mixed convection in a lid-driven enclosure with an elliptical cylinder using an artificial neural network

, , &
Pages 29-47 | Received 13 Apr 2020, Accepted 28 May 2020, Published online: 17 Jun 2020

References

  • K. Torrance et al., “Cavity flows driven by buoyancy and shear,” J. Fluid Mech., vol. 51, no. 2, pp. 221–231, Jan. 1972. DOI: 10.1017/S0022112072001181.
  • M. K. Moallemi and K. S. Jang, “Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity,” Int. J. Heat Mass Transf., vol. 35, no. 8, pp. 1881–1892, Aug. 1992. DOI: 10.1016/0017-9310(92)90191-T.
  • A. A. Mohamad and R. Viskanta, “Flow and thermal structures in a lid-driven cavity heated from below,” Fluid Dyn. Res., vol. 12, no. 3, pp. 173–184, Apr. 1993. DOI: 10.1016/0169-5983(93)90021-2.
  • R. Iwatsu, J. M. Hyun, and K. Kuwahara, “Mixed convection in a driven cavity with a stable vertical temperature gradient,” Int. J. Heat Mass Transf., vol. 36, no. 6, pp. 1601–1608, 1993. DOI: 10.1016/S0017-9310(05)80069-9.
  • V. Sivakumar, S. Sivasankaran, P. Prakash, and J. Lee, “Effect of heating location and size on mixed convection in lid-driven cavities,” Comput. Math. Appl., vol. 59, no. 9, pp. 3053–3065, May 2010. DOI: 10.1016/j.camwa.2010.02.025.
  • M. A. R. Sharif, “Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom,” Appl. Therm. Eng., vol. 27, no. 5–6, pp. 1036–1042, Apr. 2007. DOI: 10.1016/j.applthermaleng.2006.07.035.
  • X. Shi and J. M. Khodadadi, “Laminar fluid flow and heat transfer in a lid-driven cavity due to a thin fin,” J. Heat Transf., vol. 124, no. 6, pp. 1056–1063, Dec. 2002. DOI: 10.1115/1.1517272.
  • H. F. Oztop and A. Varol, “Combined convection in inclined porous lid-driven enclosures with sinusoidal thermal boundary condition on one wall,” Prog. Comput. Fluid Dynam. Int. J., vol. 9, no. 2, pp. 127–131, 2009. DOI: 10.1504/PCFD.2009.023356.
  • H. F. Oztop, Z. Zhao, and B. Yu, “Fluid flow due to combined convection in lid-driven enclosure having a circular body,” Int. J. Heat Fluid Flow, vol. 30, no. 5, pp. 886–901, Oct. 2009. DOI: 10.1016/j.ijheatfluidflow.2009.04.009.
  • M. M. Rahma, N. A. Rahim, S. Saha, M. M. Billah, R. Saidur, and A. Ahsan, “Optimization of mixed convection in a lid-driven enclosure with a heat generating circular body,” Numer. Heat Tr. A Appl., vol. 60, no. 7, pp. 629–650, Oct. 2011. DOI: 10.1080/10407782.2011.616772.
  • A. W. Islam, M. A. R. Sharif, and E. R. Carlson, “Mixed convection in a lid driven square cavity with an isothermally heated square blockage inside,” Int. J. Heat Mass Transf., vol. 55, no. 19–20, pp. 5244–5255, Sept. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.032.
  • K. Khanafer and S. M. Aithal, “Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder,” Int. J. Heat Mass Transf., vol. 66, pp. 200–209, Nov. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.023.
  • G. F. Zheng, M. Y. Ha, H. S. Yoon, and Y. G. Park, “A numerical study on mixed convection in a lid-driven cavity with a circular cylinder,” J. Mech. Sci. Technol., vol. 27, no. 1, pp. 273–286, Jan. 2013. DOI: 10.1007/s12206-012-1201-1.
  • K. M. Gangawane, “Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers,” Int. J. Heat Mass Transf., vol. 105, pp. 34–57, Feb. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.061.
  • Y. G. Park, H. W. Cho, G. S. Mun, and M. Y. Ha, “Effect of the aspect ratio of an elliptical cylinder on mixed convection heat transfer within a lid-driven enclosure,” J. Mech. Sci. Technol., vol. 34, no. 7, 2020. DOI: 10.1007/s12206-020-06-y.
  • T. V. V. Sudhakar, C. Balaji, and S. P. Venkateshan, “Optimal configuration of discrete heat sources in a vertical duct under conjugate mixed convection using artificial neural networks,” Int. J. Therm. Sci., vol. 48, no. 5, pp. 881–890, May 2009. DOI: 10.1016/j.ijthermalsci.2008.06.013.
  • F. Selimefendigil and H. F. Oztop, “Estimation of the mixed convection heat transfer of a rotating cylinder in a vented cavity subjected to nanofluid by using generalized neural networks,” Numer. Heat Transf. A Appl., vol. 65, no. 2, pp. 165–185, 2014. DOI: 10.1080/10407782.2013.826109.
  • M. P. Nahak, M. J. Triveni, and R. Panua, “Numerical investigation of mixed convection in a lid-driven triangular cavity with a circular cylinder using ANN modeling,” Int. J. Heat Technol., vol. 35, no. 4, pp. 903–918, Dec. 2017. DOI: 10.18280/ijht.350427.
  • F. Selimefendigil and H. F. Oztop, “Fuzzy-based estimation of mixed convection heat transfer in a square cavity in the presence of an adiabatic inclined fin,” Int. Com. Heat Mass Transf., vol. 39, no. 10, pp. 1639–1646, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.10.006.
  • C. S. N. Azwadi, M. Zeinali, A. Safdari, and A. Kazemi, “Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity,” Num. Heat Transf. A Appl., vol. 63, no. 12, pp. 906–920, Apr. 2013. DOI: 10.1080/10407782.2013.757154.
  • J. Kim, D. Kim, and H. Choi, “An immersed-boundary finite volume method for simulations of flow in complex geometries,” J. Comp. Phys., vol. 171, no. 1, pp. 132–150, Jul. 2001. DOI: 10.1006/jcph.2001.6778.
  • J. Kim and H. Choi, “An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries,” KSME Int. J., vol. 18, no. 6, pp. 1026–1035, Jun. 2004. DOI: 10.1007/BF02990875.
  • C. Choi, “A numerical study of the effect of a circular cylinder on natural convection in rectangular channel heated from bottom wall,” Ph.D. dissertation, Dept. Mech., Pusan National University, Busan, 2014.
  • H. Choi and P. Moin, “Effects of the computational time step on numerical solutions of turbulent flow,” J. Comput. Phys., vol. 113, no. 1, pp. 1–4, Jul. 1994. DOI: 10.1006/jcph.1994.1112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.