Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 7
426
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of wetting states and wetting transition of droplets on the microstructured surface using the lattice Boltzmann model

&
Pages 321-337 | Received 28 Apr 2020, Accepted 26 Jun 2020, Published online: 16 Jul 2020

References

  • C. Dorrer and J. Rühe, “Some thoughts on superhydrophobic wetting,” Soft Matter, vol. 5, no. 1, pp. 51–61, 2009. DOI: 10.1039/B811945G.
  • D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res., vol. 38, no. 1, pp. 71–99, 2008. DOI: 10.1146/annurev.matsci.38.060407.132434.
  • L. Ren, S. Wang, X. Tian, Z. Han, L. Yan and Z. Qiu, “Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects,” J. Bionic Eng., vol. 4, no. 1, pp. 33–40, 2007. DOI: 10.1016/S1672-6529(07)60010-9.
  • R. Furstner, W. Barthlott, C. Neinhuis and P. Walzel, “Wetting and self-cleaning properties of artificial superhydrophobic surfaces,” Langmuir, vol. 21, no. 3, pp. 956–961, 2005. DOI: 10.1021/la0401011.
  • P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez and J. Aizenberg, “Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance,” ACS Nano, vol. 6, no. 8, pp. 6569–6577, 2012. DOI: 10.1021/nn302310q.
  • H. Zhao, K. C. Park and K. Y. Law, “Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness",” Langmuir, vol. 28, no. 42, pp. 14925–14934, 2012. DOI: 10.1021/la302765t.
  • K. Teshima, H. Sugimura, Y. Inoue, O. Takai and A. Takano, “Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating,” Appl. Surf. Sci., vol. 244, no. 1-4, pp. 619–622, 2005. DOI: 10.1016/j.apsusc.2004.10.143.
  • Y. Wang, W. Wang, L. Zhong, J. Wang, Q. Jiang and X. Guo, “Super-hydrophobic surface on pure magnesium substrate by wet chemical method,” Appl. Surf. Sci., vol. 256, no. 12, pp. 3837–3840, 2010. DOI: 10.1016/j.apsusc.2010.01.037.
  • X. Zhang, F. Shi, J. Niu, Y. Jiang and Z. Wang, “Superhydrophobic surfaces: From structural control to functional application,” J. Mater. Chem., vol. 18, no. 6, pp. 621–633, 2008. DOI: 10.1039/B711226B.
  • D. Brutin and V. Starov, “Recent advances in droplet wetting and evaporation,” Chem. Soc. Rev., vol. 47, no. 2, pp. 558–585, 2018. DOI: 10.1039/c6cs00902f.
  • E. Bormashenko, “Progress in understanding wetting transitions on rough surfaces,” Adv Colloid Interface Sci., vol. 222, pp. 92–103, 2015. DOI: 10.1016/j.cis.2014.02.009.
  • D. Quéré, “Rough ideas on wetting,” Physica A: Stat. Mech. Appl. vol. 313, no. 1-2, pp. 32–46, 2002. DOI: 10.1016/S0378-4371(02)01033-6.
  • D. Khojasteh, M. Kazerooni, S. Salarian and R. Kamali, “Droplet impact on superhydrophobic surfaces: A review of recent developments,” J. Ind. Eng. Chem., vol. 42, pp. 1–14, 2016. DOI: 10.1016/j.jiec.2016.07.027.
  • A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., vol. 40, no. 0, pp. 546–551, 1944. DOI: 10.1039/tf9444000546.
  • R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Chem., vol. 53, no. 9, pp. 1466–1467, 1949. DOI: 10.1021/j150474a015.
  • L. Gao and T. J. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir, vol. 23, no. 7, pp. 3762–3765, 2007. DOI: 10.1021/la062634a.
  • G. Whyman and E. Bormashenko, “How to make the Cassie wetting state stable? Langmuir: The,” Langmuir, vol. 27, no. 13, pp. 8171–8176, 2011. DOI: 10.1021/la2011869.
  • A. T. Paxson, K. K. Varanasi, N. A. Patankar and H. Kwon, “Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces,” Phys. Rev. Lett., vol. 106, no. 3, pp. 36102, 2011.
  • W. Lei, Z. Jia, J. He and T. Cai, “Dynamic properties of vibrated drops on a superhydrophobic patterned surface,” Appl. Therm. Eng., vol. 62, no. 2, pp. 507–512, 2014. DOI: 10.1016/j.applthermaleng.2013.10.019.
  • G. Liu, L. Fu, A. V. Rode and V. S. J. Craig, “Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition,” Langmuir, vol. 27, no. 6, pp. 2595–2600, 2011. DOI: 10.1021/la104669k.
  • N. Kumari and S. V. Garimella, “Electrowetting-induced dewetting transitions on superhydrophobic surfaces,” Langmuir, vol. 27, no. 17, pp. 10342–10346, 2011. DOI: 10.1021/la2027412.
  • Z. Cheng, H. Lai, N. Zhang, K. Sun and L. Jiang, “Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface,” J. Phys. Chem. C, vol. 116, no. 35, pp. 18796–18802, 2012. DOI: 10.1021/jp304965j.
  • Q. Li, K. H. Luo, Q. J. Kang and Q. Chen, “Contact angles in the pseudopotential lattice Boltzmann modeling of wetting,” Phys. Rev. E, vol. 90, no. 5, pp. 053301, 2014. DOI: 10.1103/PhysRevE.90.053301.
  • S. Succi, “Lattice Boltzmann 2038,” EPL, vol. 109, no. 5, pp. 50001, 2015. DOI: 10.1209/0295-5075/109/50001.
  • M. Sbragaglia, R. Benzi, L. Biferale, S. Succi and F. Toschi, “Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows,Phys. Rev. Lett., vol. 97, no. 20, pp. 2045032006. DOI: 10.1103/PhysRevLett.97.204503.
  • W. Gong, Y. Yan, S. Chen and D. Giddings, “Numerical study of wetting transitions on biomimetic surfaces using a lattice Boltzmann approach with large density ratio,” J. Bionic Eng., vol. 14, no. 3, pp. 486–496, 2017. DOI: 10.1016/S1672-6529(16)60414-6.
  • Q. Li, Y. Yu, P. Zhou and H. J. Yan, “Droplet migration on hydrophobic-hydrophilic hybrid surfaces: A lattice Boltzmann study,” RSC Adv., vol. 7, no. 24, pp. 14701–14708, 2017. DOI: 10.1039/C6RA28665H.
  • B. Zhang, J. Wang and X. Zhang, “Effects of the Hierarchical Structure of Rough Solid Surfaces on the Wetting of Microdroplets,” Langmuir, vol. 29, no. 22, pp. 6652–6658, 2013. DOI: 10.1021/la400800u.
  • B. Zhang, X. Chen, J. Dobnikar, Z. Wang and X. Zhang, “Spontaneous Wenzel to Cassie dewetting transition on structured surfaces,” Phys. Rev. Fluids, vol. 1, no. 7, 2016.
  • A. Yagub, H. Farhat, S. Kondaraju and T. Singh, “A lattice Boltzmann model for substrates with regularly structured surface roughness,” J. Comput. Phys., vol. 301, pp. 402–414, 2015. DOI: 10.1016/j.jcp.2015.08.040.
  • L. Fan and Z. Yu, “Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow,” Phys. Rev. E, vol. 82, no. 4, pp. 46708, 2010.
  • X. Shan, “Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models,” Phys. Rev. E, vol. 73, no. 4, pp. 47701, 2006.
  • R. Huang and H. Wu, “Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow,” J. Comput. Phys., vol. 327, pp. 121–139, 2016. DOI: 10.1016/j.jcp.2016.09.030.
  • Y. Wu, N. Gui, X. Yang, J. Tu and S. Jiang, “Improved stability strategies for pseudo-potential models of lattice Boltzmann simulation of multiphase flow,” Int. J. Heat Mass Tran., vol. 125, pp. 66–81, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.021.
  • G. Hazi and A. Markus, “On the bubble departure diameter and release frequency based on numerical simulation results,” Int. J. Heat Mass Tran., vol. 52, no. 5-6, pp. 1472–1480, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.09.003.
  • R. Huang and H. Wu, “A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation,” J. Comput. Phys., vol. 274, pp. 50–63, 2014. DOI: 10.1016/j.jcp.2014.05.041.
  • Q. Li, P. Zhou and H. J. Yan, “Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change,” Phys. Rev. E, vol. 96, no. 6-1, pp. 0633032017. DOI: 10.1103/PhysRevE.96.063303.
  • Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen and Q. Liu, “Lattice Boltzmann methods for multiphase flow and phase-change heat transfer,” Prog. Energ. Combust., vol. 52, pp. 62–105, 2016. DOI: 10.1016/j.pecs.2015.10.001.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, pp. 42101, 2006.
  • L. Li, X. Jia and Y. Liu, “Modified outlet boundary condition schemes for large density ratio lattice Boltzmann Models,” J. Heat Transfer, vol. 139, no. 5, pp. 52003, 2017. DOI: 10.1115/1.4036001.
  • Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, 1997. DOI: 10.1063/1.869307.
  • L. Li, C. Chen, R. Mei and J. F. Klausner, “Conjugate heat and mass transfer in the lattice Boltzmann equation method,” Phys. Rev. E Stat Nonlin. Soft Matter Phys., vol. 89, no. 4, pp. 43308, 2014.
  • J. Bico, U. Thiele and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. A Physicochem. Eng. Aspects, vol. 206, no. 1-3, pp. 41–46, 2002. DOI: 10.1016/S0927-7757(02)00061-4.
  • Y. Y. Yan, N. Gao and W. Barthlott, “Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces,” Adv. Colloid Interface Sci., vol. 169, no. 2, pp. 80–105, 2011. DOI: 10.1016/j.cis.2011.08.005.
  • G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, “Analysis of droplet evaporation on a superhydrophobic surface,” Langmuir, vol. 21, no. 24, pp. 11053–11060, 2005. DOI: 10.1021/la0518795.
  • Y. C. Jung and B. Bhushan, “Wetting transition of water droplets on superhydrophobic patterned surfaces,” Scripta Mater, vol. 57, no. 12, pp. 1057–1060, 2007. DOI: 10.1016/j.scriptamat.2007.09.004.
  • N. A. Patankar, “Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach,” Langmuir, vol. 26, no. 11, pp. 8941–8945, 2010. DOI: 10.1021/la9047424.
  • D. Hee Kwon and S. J. Lee, “Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces,” Appl. Phys. Lett., vol. 100, no. 17, pp. 171601, 2012. DOI: 10.1063/1.4705296.
  • T. Cai, Z. Jia, H. Yang and G. Wang, “Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces,” Colloid Polym. Sci., vol. 294, no. 5, pp. 833–840, 2016. DOI: 10.1007/s00396-016-3836-4.
  • M. Reyssat, J. M. Yeomans and D. Quéré, “Impalement of fakir drops, EPL,” Europhys. Lett., vol. 81, no. 2, pp. 26006, 2008. DOI: 10.1209/0295-5075/81/26006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.