Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 9
126
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of flow and thermal maps during natural convection within porous triangular configurations subjected to linear heating at inclined walls

, &
Pages 479-503 | Received 20 Jan 2020, Accepted 26 Jul 2020, Published online: 02 Sep 2020

References

  • D. S. Mehta, B. Vaghela, M. K. Rathod, and J. Banerjee, “Heat transfer intensification in horizontal shell and tube latent heat storage unit,” Numer. Heat Transfer Part A Appl., vol. 75, no. 7, pp. 489–508, 2019. DOI: 10.1080/10407782.2019.1599273.
  • J. C. Cheng, Y. L. Tsay, and C. H. Yang, “Characteristics and enhancement of heat transfer from heat-generating blocks mounted on back wall of a 3D cabinet to an ambient natural convective air stream,” Numer. Heat Transfer Part A Appl., vol. 74, no. 9, pp. 1503–1519, 2018. DOI: 10.1080/10407782.2018.1525159.
  • R. P. Soni and M. R. Gavara, “Natural convection in a cavity surface mounted with discrete heaters and subjected to different cooling configurations,” Numer. Heat Transfer Part A Appl., vol. 70, no. 1, pp. 79–102, 2016. DOI: 10.1080/10407782.2016.1173429.
  • M. Sankar, Y. Do, S. Ryu, and B. Jang, “Cooling of heat sources by natural convection heat transfer in a vertical annulus,” Numer. Heat Transfer Part A Appl., vol. 68, no. 8, pp. 847–869, 2015. DOI: 10.1080/10407782.2015.1023097.
  • S. Husain and M. A. Siddiqui, “Numerical and experimental analysis of natural convection flow boiling of water in internally heated vertical annulus,” Numer. Heat Transfer Part A Appl., vol. 73, no. 9, pp. 624–653, 2018. DOI: 10.1080/10407782.2018.1464315,.
  • R. Sadeghi, M. S. Shadloo, and K. Hooman, “Numerical investigation of the natural convection film boiling around elliptical tubes,” Numer. Heat Transfer Part A Appl., vol. 70, no. 7, pp. 707–722, 2016. DOI: 10.1080/10407782.2016.1214484.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach,” Numer. Heat Transfer Part A Appl., vol. 74, no. 7, pp. 1405–1423, 2018. DOI: 10.1080/10407782.2018.1505096.
  • M. Siavashi, H. R. T. Bahrami, and H. Saffari, “Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model,” Numer. Heat Transfer Part A Appl., vol. 71, no. 12, pp. 1251–1273, 2017. DOI: 10.1080/10407782.2017.1345270.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transfer Part A Appl., vol. 71, no. 11, pp. 1159–1173, 2017. DOI: 10.1080/10407782.2017.1337990.
  • J. H. Son and I. S. Park, “Numerical study of MHD natural convection in a rectangular enclosure with an insulated block,” Numer. Heat Transfer Part A Appl., vol. 71, no. 10, pp. 1004–1022, 2017. DOI: 10.1080/10407782.2017.1330090.
  • K. Vafai, Handbook of Porous Media, 3rd ed. Boca Raton, FL, USA: CRC Press, 2015.
  • D. A. Nield and A. Bejan, Convection in Porous Media, 4th ed. Berlin, Germany: Springer, 2012.
  • D. B. Ingham and I. Pop, Transport Phenomena in Porous Media III, Oxford, UK: Elsevier, 2005.
  • D. Das, L. Lukose, and T. Basak, “Role of multiple discrete heaters on the entropy generation during natural convection in porous square and triangular enclosures,” Numer. Heat Transfer Part A-Appl., vol. 74, no. 10, pp. 1636–1665, 2018. DOI: 10.1080/10407782.2018.1529483.
  • M. S. Astanina, M. A. Sheremet, and J. C. Umavathi, “Transient natural convection with temperature-dependent viscosity in a square partially porous cavity having a heat-generating source,” Numer. Heat Transfer Part A Appl., vol. 73, no. 12, pp. 849–862, 2018. DOI: 10.1080/10407782.2018.1462007.
  • S. Adjal, S. Aklouche-Benouaguef, and B. Zeghmati, “Natural convection in a partially porous cavity: roads to chaos,” Numer. Heat Transfer Part A Appl., vol. 74, no. 8, pp. 1443–1467, 2018. DOI: 10.1080/10407782.2018.1525158.
  • G. C. Pal, N. Goswami, and S. Pati, “Numerical investigation of unsteady natural convection heat transfer and entropy generation from a pair of cylinders in a porous enclosure,” Numer. Heat Transfer Part A Appl., vol. 74, no. 6, pp. 1323–1341, 2018. DOI: 10.1080/10407782.2018.1507887.
  • A. Tahmasebi, M. Mahdavi, and M. Ghalambaz, “Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model,” Numer. Heat Transfer Part A Appl., vol. 73, no. 4, pp. 254–276, 2018. DOI: 10.1080/10407782.2017.1422632.
  • S. Dutta, A. K. Biswas, and S. Pati, “Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall,” Numer. Heat Transfer Part A Appl., vol. 73, no. 4, pp. 222–240, 2018. DOI: 10.1080/10407782.2018.1423773.
  • F. Moukalled, J. Kasamani, M. Darwish, A. Hammoud, and M. K. Mansour, “Buoyancy-induced flow, heat, and mass transfer in a porous annulus,” Numer. Heat Transfer Part A Appl., vol. 72, no. 2, pp. 107–125, 2017. DOI: 10.1080/10407782.2017.1359014.
  • F. Wu, D. L. Lu, and G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model,” Numer. Heat Transfer Part A Appl,, vol. 69, no. 11, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • V. M. Rathnam, P. Biswal, and T. Basak, “Analysis of entropy generation during natural convection within entrapped porous triangular cavities during hot or cold fluid disposal,” Numer. Heat Transfer Part A Appl., vol. 69, no. 9, pp. 931–956, 2016. DOI: 10.1080/10407782.2015.1109362.
  • F. Moukalled, M. Darwish, J. Kasamani, A. Hammoud, and M. K. Mansour, “Buoyancy-induced flow and heat transfer in a porous annulus between concentric horizontal circular and square cylinders,” Numer. Heat Transfer Part A Appl., vol. 69, no. 9, pp. 1029–1050, 2016. DOI: 10.1080/10407782.2015.1090847.
  • H. M. Chou, H. W. Wu, I. H. Lin, W. J. Yang, and M. L. Cheng, “Effects of temperature-dependent viscosity on natural convection in porous media,” Numer. Heat Transfer Part A-Appl., vol. 68, no. 12, pp. 1331–1350, 2015. DOI: 10.1080/10407782.2015.1012864.
  • M. A. Sheremet, “Unsteady conjugate natural convection in a three-dimensional porous enclosure,” Numer. Heat Transfer Part A Appl., vol. 68, no. 3, pp. 243–267, 2015. DOI: 10.1080/10407782.2014.977172.
  • M. T. Nguyen, A. M. Aly, and S. W. Lee, “Natural convection in a non-Darcy porous cavity filled with Cu-Water nanofluid using the characteristic-based split procedure in finite-element method,” Numer. Heat Transfer Part A Appl., vol. 67, no. 2, pp. 224–247, 2015. DOI: 10.1080/10407782.2014.923225.
  • A. Sojoudi, S. C. Saha, A. M. Sefidan, and Y. T. Gu, “Natural convection subject to sinusoidal thermal forcing on inclined walls and heat source located on bottom wall of an attic-shaped space,” Energ. Build., vol. 128, pp. 845–866, 2016. DOI: 10.1016/j.enbuild.2016.07.053.
  • A. Sojoudi, S. C. Saha, and Y. T. Gu, “Natural convection due to differential heating of inclined walls and heat source placed on bottom wall of an attic shaped space,” Energ. Build., vol. 89, pp. 153–162, 2015. DOI: 10.1016/j.enbuild.2014.12.042.
  • A. S. Dogonchi, M. Waqas, S. M. Seyyedi, M. Hashemi-Tilehnoee, and D. D. Ganji, “CVFEM analysis for Fe3O4-H2O nanofluid in an annulus subject to thermal radiation,” Int. J. Heat Mass Transfer, vol. 132, pp. 473–483, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.124.
  • D. Das, L. Lukose, and T. Basak, “Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities,” Renew. Energ., vol. 121, pp. 205–229, 2018. DOI: 10.1016/j.renene.2017.11.008.
  • Y. Varol, H. F. Oztop, and I. Pop, “Influence of inclination angle on buoyancy-driven convection in triangular enclosure filled with a fluid-saturated porous medium,” Heat Mass Transfer, vol. 44, no. 5, pp. 617–624, 2008. DOI: 10.1007/s00231-007-0290-3.
  • T. Basak, S. Roy, and C. Thirumalesha, “Finite element simulations of natural convection in a right-angle triangular enclosure filled with a porous medium: effects of various thermal boundary conditions,” J. Por. Media, vol. 11, no. 2, pp. 159–178, 2008. DOI: 10.1615/JPorMedia.v11.i2.30.
  • T. Basak, S. Roy, and S. K. Babu, “Natural convection and flow in differentially heated isosceles triangular enclosures filled with porous medium,” Chem. Eng. Sci., vol. 63, no. 13, pp. 3328–3340, 2008. DOI: 10.1016/j.ces.2008.03.038.
  • H. F. Oztop, Y. Varol, and I. Pop, “Investigation of natural convection in triangular enclosure filled with porous medium saturated with water near 4 °C,” Energ. Convers. Manag., vol. 50, no. 6, pp. 1473–1480,  2009. DOI: 10.1016/j.enconman.2009.02.023.
  • M. Zeng, P. Yu, F. Xu, and Q. W. Wang, “Natural convection in triangular attics filled with porous medium heated from below,” Numer. Heat Transfer Part A Appl., vol. 63, no. 10, pp. 735–754, 2013. DOI: 10.1080/10407782.2013.756702.
  • M. A. Mansour and S. E. Ahmed, “A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect,” Eng. Sci. Technol. Int. J., vol. 18, no. 3, pp. 485–495, 2015. DOI: 10.1016/j.jestch.2015.03.007.
  • S. Kimura and A. Bejan, “The heatline visualization of convective heat transfer,” J. Heat Transfer, vol. 105, no. 4, pp. 916–919, 1983. DOI: 10.1115/1.3245684.
  • T. Basak, D. Das, and P. Biswal, “Heatlines: modeling, visualization, mixing and thermal management,” Prog. Energ. Combust. Sci., vol. 64, pp. 157–218, 2018. DOI: 10.1016/j.pecs.2017.08.003.
  • D. Das, L. Lukose, and T. Basak, “Analysis of efficiency of convection in porous geometries (square vs. triangular) with multiple discrete heaters on walls: a heatline perspective,” Int. J. Numeric. Methods Heat Fluid Flow, vol. 29, no. 9, pp. 3305–3346, 2019. DOI: 10.1108/HFF-11-2018-0675.
  • D. Das and T. Basak, “Role of discrete heating on the efficient thermal management within porous square and triangular enclosures via heatline approach,” Int. J. Heat Mass Transfer, vol. 112, pp. 489–508, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.083.
  • R. Anandalakshmi, R. S. Kaluri, and T. Basak, “Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls,” Energy, vol. 36, no. 8, pp. 4879–4896, 2011. DOI: 10.1016/j.energy.2011.05.033.
  • T. Basak, S. Roy, D. Ramakrishna, and B. D. Pandey, “Analysis of heat recovery and heat transfer within entrapped porous triangular cavities via heatline approach,” Int. J. Heat Mass Transfer, vol. 53, no. 19–20, pp. 3655–3669, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.03.040.
  • Y. Varol, H. F. Oztop, M. Mobedi, and I. Pop, “Visualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavity,” Int. J. Heat Mass Transfer, vol. 51, no. 21–22, pp. 5040–5051, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.04.023.
  • D. R. Kassoy and A. Zebib, “Convection fluid dynamics in a model of a fault zone in the earth’s crust,” J. Fluid Mech., vol. 88, no. 4, pp. 769–792, 1978. DOI: 10.1017/S0022112078002384.
  • J. N. Reddy, An Introduction to the Finite Element Method. New York, NY, USA: McGraw-Hill, 1993.
  • K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” Int. J. Heat Mass Transfer, vol. 24, no. 2, pp. 195–203, 1981. DOI: 10.1016/0017-9310(81)90027-2.
  • C. T. Hsu and P. Cheng, “Thermal dispersion in a porous medium,” Int. J. Heat Mass Transfer, vol. 33, no. 8, pp. 1587–1597, 1990. DOI: 10.1016/0017-9310(90)90015-M.
  • T. Basak, S. Roy, D. Ramakrishna, and I. Pop, “Visualization of heat transport during natural convection within porous triangular cavities via heatline approach,” Numer. Heat Transfer Part A-Appl., vol. 57, no. 6, pp. 431–452, 2010. DOI: 10.1080/10407780903507866.
  • R. S. Kaluri, R. Anandalakshmi, and T. Basak, “Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1576–1592, 2010. DOI: 10.1016/j.ijthermalsci.2010.04.022.
  • T. Basak, S. Roy, and A. R. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4525–4535, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.015.
  • K. Hooman, “Energy flux vectors as a new tool for convection visualization,” Int. J. Num. Meth. HFF, vol. 20, no. 2, pp. 240–249, 2010. DOI: 10.1108/09615531011016984.
  • L. Lukose and T. Basak, “Heatlines vs. energy flux vectors: tools for heat flow visualization,” Int. Commun. Heat Mass Transfer, vol. 108, Article No. UNSP 104265 2019. DOI: 10.1016/j.icheatmasstransfer.2019.05.011.
  • P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, “Natural convective heat transfer in a fluid saturated variable porosity medium,” Int. J. Heat Mass Transfer, vol. 40, no. 16, pp. 3955–3967, 1997. DOI: 10.1016/S0017-9310(97)00008-2.
  • H. Asan and L. Namli, “Numerical simulation of buoyant flow in a roof of triangular cross-section under winter day boundary conditions,” Energ. Build., vol. 33, no. 7, pp. 753–757, 2001. DOI: 10.1016/S0378-7788(01)00063-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.