Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 1
171
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Lattice Boltzmann method for nanofluid forced convection heat exchange in a porous channel with multiple heated sources

, ORCID Icon, , , &
Pages 21-39 | Received 24 Jul 2020, Accepted 20 Aug 2020, Published online: 11 Sep 2020

References

  • N. Ahammed, L. G. Asirvatham, and S. Wongwises, “Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger,” Experimental Thermal Fluid Sci., vol. 74, pp. 81–90, 2016. DOI: 10.1016/j.expthermflusci.2015.11.023.
  • X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristic of nanofluids: A review,” Int. J. Therm. Sci., vol. 46, no. 1, pp. 1–19, 2007. DOI: 10.1016/j.ijthermalsci.2006.06.010.
  • Y. Ding, et al., “Forced convective heat transfer of nanofluids,” Adv. Powder Technol., vol. 18, no. 6, pp. 813–824, 2007. DOI: 10.1163/156855207782515021.
  • J. A. Esfahani, M. Akbarzadeh, S. Rashidi, M. A. Rosen, and R. Ellahi, “Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat,” Int. J. Heat Mass Transfer, vol. 109, pp. 1162–1171, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.006.
  • S. A. Khashan, A. M. Al-Amiri, and I. Pop, “Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model,” Int. J. Heat Mass Transfer, vol. 49, no. 5–6, pp. 1039–1049, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.09.011.
  • T. Nagel, S. Beckert, C. Lehmann, R. Gläser, and O. Kolditz, “Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review,” Appl. Energy, vol. 178, pp. 323–345, 2016. DOI: 10.1016/j.apenergy.2016.06.051.
  • P. Rahim Mashaei, S. M. Hosseinalipour, and M. Bahiraei, “Numerical investigation of nanofluid forced convection in channels with discrete heat sources. J. Appl. Math., vol. 2012, pp. 1–1091, 2012. DOI: 10.1155/2012/259284.
  • O. Cekmer, M. Mobedi, B. Ozerdem, and I. Pop, “Fully developed forced convection heat transfer in a porous channel with asymmetric heat flux boundary conditions,” Transp. Porous Med.., vol. 90, no. 3, pp. 791–806, 2011. DOI: 10.1007/s11242-011-9816-8.
  • S. S. Vadri, A. P. Karaiyan, and A. Pattamatta, “Numerical investigation of forced convective heat transfer characteristics of a porous channel filled with-water nanofluid in the presence of heaters and coolers,” Heat Transfer Eng., vol. 39, no. 11, pp. 985–997, 2018. DOI: 10.1080/01457632.2017.1357786.
  • S. Abelman, A. B. Parsa and H. O. Sayehvand, “Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity,” Quaest. Math., vol. 41, no. 4, pp. 419–449, 2018. DOI: 10.2989/16073606.2017.1404503.
  • V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, and S. Wongwises, “Unconfined laminar nanofluid flow and heat transfer around a square cylinder,” Int. J. Heat Mass Transfer, vol. 55, no. 5–6, pp. 1475–1485, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.030.
  • P. C. Huang, C. F. Yang, J. J. Hwang, and M. T. Chiu, “Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers,” Int. J. Heat Mass Transfer, vol. 48, no. 3–4, pp. 647–664, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.07.041.
  • C. Pan, J. F. Prins, and C. T. Miller, “A high-performance lattice Boltzmann implementation to model flow in porous media,” Comput. Phys. Commun., vol. 158, no. 2, pp. 89–105, 2004. DOI: 10.1016/j.cpc.2003.12.003.
  • Z. Guo and T. S. Zhao, “A lattice Boltzmann model for convection heat transfer in porous media,” Numer Heat Tr B Fund, vol. 47, no. 2, pp. 157–177, 2005. DOI: 10.1080/10407790590883405.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transfer, vol. 52, no. 13–14, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • N. A. C. Sidik, M. Khakbaz, L. Jahanshaloo, S. Samion, and A. N. Darus, “Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 178, 2013. DOI: 10.1186/1556-276X-8-178.
  • M. Sheikholeslami, “Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method,” J. Mol. Liq., vol. 249, pp. 739–746, 2018. DOI: 10.1016/j.molliq.2017.11.069.
  • A. A. Servati, K. Javaherdeh, and H. R. Ashorynejad, “Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method,” Adv Powder Technol., vol. 25, no. 2, pp. 666–675, 2014. DOI: 10.1016/j.apt.2013.10.012.
  • G. Imani, M. Maerefat, and K. Hooman, “Lattice Boltzmann simulation of conjugate heat transfer from multiple heated obstacles mounted in a walled parallel plate channel,” Numer. Heat Tr., vol. 62, no. 10, pp. 798–821, 2012. DOI: 10.1080/10407782.2012.709442.
  • Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E: Stat. Nonlin Soft Matter Phys., vol. 66, no. 3 Pt 2B, pp. 036304, 2002. DOI: 10.1103/PhysRevE.66.036304.
  • R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transfer, vol. 52, no. 21–22, pp. 4675–4682, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.027.
  • N. Masoumi, N. Sohrabi, and A. Behzadmehr, “A new model for calculating the effective viscosity of nanofluids,” J. Phys. D: Appl. Phys., vol. 42, no. 5, pp. 055501, 2009. DOI: 10.1088/0022-3727/42/5/055501.
  • A. Hadim, “Forced convection in a porous channel with localized heat sources,” J. Heat Transfer, vol. 116, no. 2, pp. 465–472, 1994. DOI: 10.1115/1.2911419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.