Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 6
157
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A fourth-order compact difference algorithm for numerical solution of natural convection in an inclined square enclosure

, &
Pages 255-290 | Received 18 Jan 2021, Accepted 01 Jun 2021, Published online: 19 Jul 2021

References

  • I. Catton, “Natural convection in enclosures,” Proc. 6th Int. Heat Transfer Conf., Toronto, Canada, 6, 1978, pp. 13–31.
  • S. Ostrach, “Natural convection in enclosures,” ASME J. Heat Transfer, vol. 110, no. 4b, pp. 1175–1190, 1988. DOI: 10.1115/1.3250619.
  • K. T. Yang, “Transitions and bifurcations in laminar buoyant flows in confined enclosures,” ASME J. Heat Transfer, vol. 110, no. 4b, pp. 1191–1204, 1988. DOI: 10.1115/1.3250620.
  • G. D. V. Davis, “Natural convection of air in a square cavity: A benchmark numerical solution,” Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • G. de Vahl Davis and I. P. Jones, “Natural convection in a square cavity: A comparison exercise,” Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 227–248, 1983. DOI: 10.1002/fld.1650030304.
  • K. L. Guo and S. T. Wu, “Numerical study of flow and temperature stratification in a liquid thermal storage tank,” J. Solar Energ., vol. 107, no. 1, pp. 15–20, 1985. DOI: 10.1115/1.3267646.
  • M. R. Ravi, R. A. W. M. Henkes and C. J. Hoogendoorn, “On the high-Rayleigh-number structure of steady laminar natural-convection flow in a square cavity,” J. Fluid Mech., vol. 262, pp. 325–351, 1994. DOI: 10.1017/S0022112094000522.
  • C. Y. Soong, P. Y. Tzeng, D. C. Chiang and C. D. Hsieh, “Numerical study on mode-transition of natural convection in dfferentially heated inclined enclosures,” Int. J. Heat Mass Transf., vol. 39, no. 14, pp. 2869–2882, 1996. DOI: 10.1016/0017-9310(95)00378-9.
  • C. Y. Soong, P. Y. Tzeng and C. D. Hsieh, “Numerical study of bottom-wall temperature modulation effects on thermal instability and oscillatory cellular convection in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 44, no. 20, pp. 3855–3868, 2001. DOI: 10.1016/S0017-9310(01)00030-8.
  • F. J. Hamady, J. R. Lloyd, H. Q. Yang and K. T. Yang, “Study of local natural convection heat transfer in an inclined anclosure,” Int. J. Heat Mass Transf., vol. 32, no. 9, pp. 1697–1089, 1989. DOI: 10.1016/0017-9310(89)90052-5.
  • R. A. Kuyper, T. H. Van Der Meer, C. J. Hoogendoorn and R. A. W. M. Henkes, “Numerical study of laminar and turbulent natural convection in an inclined square cavity,” Int. J. Heat Mass Transf., vol. 36, pp. 1899–2911, 1993.
  • S. C. R. Dennis and J. D. Hudson, “Compact h4 finite-difference approximations to operators of Navier-Stokes type,” J. Comput. Phys., vol. 85, no. 2, pp. 390–416, 1989. DOI: 10.1016/0021-9991(89)90156-3.
  • J. Zhang, “Accurated high accuracy multigrd solution of the convection-diffusion with high Reynolds number,” Numer. Methods Partial Differential Eq., vol. 13, no. 1, pp. 77–92, 1997. DOI: 10.1002/(SICI)1098-2426(199701)13:1<77::AID-NUM6>3.0.CO;2-J.
  • J. Zhang, “On convergence and performance of iterative methods with fourth-order compact schemes,” Numer. Methods Partial Differential Eq., vol. 14, no. 2, pp. 263–280, 1998. DOI: 10.1002/(SICI)1098-2426(199803)14:2<263::AID-NUM8>3.0.CO;2-M.
  • M. M. Gupta, R. P. Manohar and J. W. Stephenson, “A single cell high order scheme for the convection-diffusion equation with variable coefficients,” Int. J. Numer. Meth. Fluids, vol. 4, no. 7, pp. 641–651, 1984. DOI: 10.1002/fld.1650040704.
  • M. Li, T. Tang and B. Fornberg, “A compact fourth-order finite difference scheme for the incompressible Navier-Stokes equations,” Int. J. Numer. Meth. Fluids, vol. 20, no. 10, pp. 1137–1151, 1995. DOI: 10.1002/fld.1650201003.
  • W. F. Spotz and G. F. Carey, “High-order compact scheme for the steady stream-function vorticity equations,” Int. J. Numer. Meth. Engng., vol. 38, no. 20, pp. 3497–3512, 1995. DOI: 10.1002/nme.1620382008.
  • G. Q. Chen, Z. Gao and Z. F. Yang, “A perturbational h4 exponential finite difference scheme for convection diffusion equation,” J. Comput. Phys., vol. 104, no. 1, pp. 129–139, 1993. DOI: 10.1006/jcph.1993.1015.
  • J. Y. Choo and D. H. Schultz, “A stable high order method for the heated cavity problem,” Int. J. Numer. Meth. Fluids, vol. 15, no. 11, pp. 1313–1332, 1992. DOI: 10.1002/fld.1650151106.
  • Y. X. Qian and T. Zhang, “The second order projection method in time for the time-dependent natural convection problem,” Appl. Math., vol. 61, no. 3, pp. 299–315, 2016. DOI: 10.1007/s10492-016-0133-y.
  • Z. F. Tian and Y. B. Ge, “A fourth-order compactfinite difference scheme for the steady streamfunction-vorticity formulation of the Navier-Stokes/Boussinesq equations,” Int. J. Numer. Meth. Fluids, vol. 41, no. 5, pp. 495–518, 2003. DOI: 10.1002/fld.444.
  • Z. F. Tian and Y. B. Ge, “A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems,” J. Comput. Appl. Math., vol. 198, no. 1, pp. 268–286, 2007. DOI: 10.1016/j.cam.2005.12.005.
  • Z. F. Tian and S. Q. Dai, “High-order compact exponential finite difference methods for convection-diffusion type problems,” J. Comput. Phys., vol. 220, no. 2, pp. 952–974, 2007. DOI: 10.1016/j.jcp.2006.06.001.
  • Z. F. Tian, “A rational high-order compact ADI method for unsteady convection-diffusion equations,” Comput. Phys. Commun., vol. 182, no. 3, pp. 649–662, 2011. DOI: 10.1016/j.cpc.2010.11.013.
  • R. J. MacKinnon and R. W. Johnson, “Differential equation based representtaion of truncation errors for accurate numerical simulation,” Int. J. Numer. Meth. Fluids, vol. 13, no. 6, pp. 739–757, 1991. DOI: 10.1002/fld.1650130606.
  • W. F. Spotz, “Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfuncition vorticity,” Int. J. Numer. Meth. Fluids, vol. 28, no. 4, pp. 737–757, 1998. DOI: 10.1002/(SICI)1097-0363(19980930)28:4<737::AID-FLD744>3.0.CO;2-L.
  • S. Abide, M. S. Binous and B. Zeghmati, “An efficient parallel high-order compact scheme for the 3D incompressible Navier-Stokes equations,” Int. J. Comput. Fluid Dynamics, vol. 31, no. 4-5, pp. 214–229, 2017. DOI: 10.1080/10618562.2017.1326592.
  • O. H. Akpan, “On a high-order compact scheme and its utilization in parallel solution of a time-dependent system on a distributed memory processor,” J. Supercomput, vol. 60, no. 3, pp. 410–419, 2012. DOI: 10.1007/s11227-008-0229-6.
  • X. Liang, X. L. Li, D. X. Fu and Y. W. Ma, “Complex transition of double- diffusive convection in a rectangular enclosure with height-to-length ratio equal to 4: Part I,” Commun. Comput. Phys. , vol. 6, no. 2, pp. 247–268, 2009. DOI: 10.4208/cicp.2009.v6.p247.
  • X. Liang, B. Peng, Z. F. Tian, “Complex transition of double- diffusive convection in a rectangular enclosure with height-to-length ratio equal to 4: part II, Int. J. Heat Mass Transfer, vol. 135, pp. 247–261, 2019.
  • L. I. Zaichik and V. M. Alipchenkov, “High-Rayleigh-number turbulent natural convection on an inclined surface,” High Temp., vol. 38, no. 3, pp. 421–442, 2000. DOI: 10.1007/BF02756002.
  • V. I. Terekhov and A. L. Ekaid, “Laminar natural convection between vertical isothermal heated plates with different temperatures,” J. Engin. Thermophys., vol. 20, no. 4, pp. 416–433, 2011. DOI: 10.1134/S1810232811040084.
  • S. Mahmoudinezhad, A. Rezania, T. Yousefi, M. S. Shadloo and L. A. Rosendahl, “Adiabatic partition effect on natural convection heat transfer inside a square cavity: Experimental and numerical studies,” Heat Mass Transf., vol. 54, no. 2, pp. 291–304, 2018. DOI: 10.1007/s00231-017-2103-7.
  • F. Oueslati, B. Ben-Beya and T. Lili, “Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources,” Heat Mass Transf., vol. 50, no. 5, pp. 721–736, 2014. DOI: 10.1007/s00231-013-1280-2.
  • R. S. Hirsh, “Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique,” J. Comput. Phys., vol. 19, no. 1, pp. 90–109, 1975. DOI: 10.1016/0021-9991(75)90118-7.
  • M. Hortmann, M. Perić and G. Scheuerer, “Finite volume multigrid prediction of laminar natural convection: Benchmark solutions,” Int. J. Numer. Meth. Fluids, vol. 11, no. 2, pp. 189–207, 1990. DOI: 10.1002/fld.1650110206.
  • P. Le Quéré, “Accurate solution to the square thermally driven cavity at high Rayleigh number,” Comput. Fluids, vol. 20, no. 1, pp. 29–41, 1991. DOI: 10.1016/0045-7930(91)90025-D.
  • M. M. Gupta and R. P. Manohar, “Boundary approximations and accuracy in viscous flow computations,” J. Comput. Phys., vol. 31, no. 2, pp. 265–288, 1979. DOI: 10.1016/0021-9991(79)90072-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.