Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 7
91
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effects of flow regime and geometric parameters on the performance of a parabolic trough solar collector using nanofluid

, , &
Pages 376-388 | Received 15 Nov 2021, Accepted 12 May 2022, Published online: 15 Jun 2022

References

  • S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012. DOI: 10.1038/nature11475.
  • E. Bellos, C. Tzivanidis, K. Moschos and K. A. Antonopoulos, “Energetic and financial evaluation of solar assisted heat pump space heating systems,” Energy Convers. Manag., vol. 120, pp. 306–319, Jul. 2016. DOI: 10.1016/j.enconman.2016.05.004.
  • S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energy Combust. Sci., vol. 30, no. 3, pp. 231–295, Jan. 2004. DOI: 10.1016/j.pecs.2004.02.001.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, no. March, pp. 99–105, 1995.
  • O. Mahian, A. Kianifar, A. Z. Sahin and S. Wongwises, “Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models,” Int. J. Heat Mass Transf, vol. 78, pp. 64–75, Nov. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.051.
  • O. Ouabouch, M. Kriraa and M. Lamsaadi, “Stability, thermophsical properties of nanofluids, and applications in solar collectors: A review,” AIMS Materials Science vol. 8, no. July, pp. 659–684, 2021. DOI: 10.3934/matersci.2021040.
  • A. Mwesigye, Z. Huan and J. P. Meyer, “Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid,” Energy Convers. Manag., vol. 120, pp. 449–465, 2016. DOI: 10.1016/j.enconman.2016.04.106.
  • M. S. Khan, et al., “Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid,” J. Therm. Anal. Calorim., vol. 142, no. 6, pp. 2227–2241, 2020. DOI: 10.1007/s10973-020-09590-2.
  • M. A. Rehan, et al., “Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions,” Renew. Energy, vol. 118, pp. 742–751, Apr. 2018. DOI: 10.1016/j.renene.2017.11.062.
  • A. Mwesigye and J. P. Meyer, “Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios,” Appl. Energy, vol. 193, pp. 393–413, 2017. DOI: 10.1016/j.apenergy.2017.02.064.
  • S. R. Yan, A. Golzar, M. Sharifpur, J. P. Meyer, D. H. Liu and M. Afrand, “Effect of U-shaped absorber tube on thermal-hydraulic performance and efficiency of two-fluid parabolic solar collector containing two-phase hybrid non-Newtonian nanofluids,” Int. J. Mech. Sci, vol. 185, pp. 105832, Nov. 2020. DOI: 10.1016/j.ijmecsci.2020.105832.
  • F. Yazdanifard, E. Ebrahimnia-Bajestan and M. Ameri, “Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids,” Energy Convers. Manag, vol. 148, pp. 1265–1277, 2017. DOI: 10.1016/j.enconman.2017.06.075.
  • M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” Eur. J. Mech. B/Fluids, vol. 65, pp. 184–191, 2017. DOI: 10.1016/j.euromechflu.2017.04.007.
  • K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4410–4428, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.048.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, Oct. 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. UK: Clarendon Press, 1891.
  • S. W. Yuan, Foundations of Fluid Mechanics. New York, USA: Prentice-Hall, 1967.
  • O. Chakraborty, B. Das, R. Gupta and S. Debbarma, “Heat transfer enhancement analysis of parabolic trough collector with straight and helical absorber tube,” Therm. Sci. Eng. Prog., vol. 20, pp. 100718, 2020. DOI: 10.1016/j.tsep.2020.100718.
  • B. S. Petukhov, “Heat transfer and friction in turbulent pipe flow with variable physical properties,” Adv. Heat Transf., vol. 6, no. C, pp. 503–564, 1970. DOI: 10.1016/S0065-2717(08)70153-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.