Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 8
98
Views
3
CrossRef citations to date
0
Altmetric
Articles

Unsteady MHD chemically reactive dissipative flow of nanofluid due to rotating cone

ORCID Icon, , & ORCID Icon
Pages 441-454 | Received 19 Nov 2021, Accepted 12 May 2022, Published online: 15 Jun 2022

References

  • S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments Appl. Non-Newtonian Flows, vol. 66, pp. 99–105, 1995.
  • X. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • H. T. Zhu, Y. S. Lin, and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” J. Colloid Interface Sci., vol. 277, no. 1, pp. 100–103, 2004. DOI: 10.1016/j.jcis.2004.04.026.
  • G. H. Ko, et al., “An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube,” Int. J. Heat Mass Transfer, vol. 50, no. 23–24, pp. 4749–4753, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.029.
  • D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transfer, vol. 52, no. 25-26, pp. 5796–5801, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.07.023.
  • S. Nadeem and S. Saleem, “Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles,” Int. J. Heat Mass Transfer, vol. 85, pp. 1041–1048, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.007.
  • A. Behrangzade and M. M. Heyhat, “The effect of using nano-silver dispersed water based nanofluid as a passive method for energy efficiency enhancement in a plate heat exchanger,” APPl. Thermal Engin., vol. 102, pp. 311–317, 2016. DOI: 10.1016/j.applthermaleng.2016.03.051.
  • M. B. Bigdeli, M. Fasano, A. Cardellini, E. Chiavazzo, and P. Asinari, “A review on the heat and mass transfer phenomena in nanofluid with special focus on automotive applications,” Renewable Sustainable Energy Rev., vol. 60, pp. 1615–1633, 2016. DOI: 10.1016/j.rser.2016.03.027.
  • B. Sun, Y. Qu, and D. Yang, “Heat transfer of single impinging jet with CU nanofluids,” APPl. Thermal Engin., vol. 102, pp. 701–707, 2016. DOI: 10.1016/j.applthermaleng.2016.03.166.
  • M. A. Khairul, K. Shah, E. Doroodchi, R. Azizian, and B. Moghtaderi, “Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids,” Int. J. Heat Mass Transfer, vol. 98, pp. 778–787, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.079.
  • W. H. Azmi, K. A. Hamid, N. A. Usri, R. Mamat, and K. V. Sharma, “Heat transfer augmentation of ethylene glycol: Water nanofluids and applications- A review,” Int. Commun. Heat Mass Transfer, vol. 75, pp. 13–23, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.018.
  • J. Raza, A. M. Rohni, Z. Omar, and M. Awais, “Heat and mass transfer analysis of MHD nanofluid flow in a rotating channel with slip effects,” J. Mol. Liquids, vol. 219, pp. 703–708, 2016. DOI: 10.1016/j.molliq.2016.04.003.
  • M. Tamizi, M. Kamalvand, and M. Namazian, “Dependency of the thermophysical properties of nanofluids on the excess adsorption,” Int. J. Heat Mass Transfer, vol. 99, pp. 630–637, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.029.
  • X. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, and R. Wang, “Heat transfer and critical heat flux of nanofluid boiling: A Comprehensive review,” Renewable Sustainable Energy Rev., vol. 62, pp. 924–940, 2016. DOI: 10.1016/j.rser.2016.05.047.
  • X. Su, M. Zhang, W. Han, and X. Guo, “Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid,” Int. J. Heat Mass Transfer, vol. 100, pp. 378–385, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.094.
  • C. S. K. Raju, N. Sandeep, and A. Malvandi, “Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat soure/sink,” J. Mol. Liquids, vol. 221, pp. 108–115, 2016. DOI: 10.1016/j.molliq.2016.05.078.
  • I. Mustafa, T. Javed, and A. Majeed, “Magnetohydrodynamic (MHD) mixed convection stagnation point flow of a nanofluid over a vertical plate with viscous dissipation,” Can. J. Phys., vol. 93, no. 11, pp. 1365–1374, 2015. DOI: 10.1139/cjp-2014-0689.
  • A. Ghaffari, T. Javed, and F. Labropulu, “Oblique stagnation point flow of a non-Newtonian nanofluid over stretching surface with radiation: A numerical study,” Therm. Sci., vol. 21, no. 5, pp. 2139–2153, 2017. DOI: 10.2298/TSCI150411163G.
  • T. Hayat, M. I. Khan, S. Qayyum, and A. Alsaedi, “Entropy generation in flow with silver and copper nanoparticles,” Colloid. Surf. A., vol. 539, pp. 335–346, 2018. DOI: 10.1016/j.colsurfa.2017.12.021.
  • T. Hayat, M. I. Khan, M. Waqas, and A. Alsaedi, “Effectiveness of magnetic nanoparticles in radiative flow of Eyring-Powell fluid,” J. Mol. Liquids, vol. 231, pp. 126–133, 2017. DOI: 10.1016/j.molliq.2017.01.076.
  • W. A. Khan, O. D. Makinde, and Z. H. Khan, “Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat,” Int. J. Heat Mass Transfer, vol. 96, pp. 525–534, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.052.
  • Y. J. Kim, “Unsteady MHD convection flow of polar fluids past a vertical moving porous plate in a porous medium,” Int. J. Heat Mass Transfer, vol. 44, no. 15, pp. 2791–2799, 2001. DOI: 10.1016/S0017-9310(00)00332-X.
  • I. U. Mbeledogu, A. R. C. Amakiri, and A. Ogulu, “Unsteady MHD free convective flow of a compressible fluid past a moving vertical plate in the presence of radiative heat transfer,” Int. J. Heat Mass Transfer, vol. 50, no. 9–10, pp. 1668–1674, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.10.032.
  • K. V. Prasad and K. Vajravelu, “Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet,” Int. J. Heat Mass Transfer, vol. 52, no. 21-22, pp. 4956–4965, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.05.022.
  • S. Nadeem and S. Saleem, “Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame,” J. Taiwan Inst. Chem. Engineers, vol. 44, no. 4, pp. 596–604, 2013. DOI: 10.1016/j.jtice.2013.01.007.
  • Y. Lin, L. Zheng, X. Zhang, L. Ma, and G. Chen, “MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation,” Int. J. Heat Mass Transfer, vol. 84, pp. 903–911, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.099.
  • T. Hayat, M. S. Anwar, M. Farooq, and A. Alsaedi, “MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer,” Int. J. Nonlinear Sci. Numer. Simulation, vol. 15, no. 6, pp. 365–376, 2014. DOI: 10.1515/ijnsns-2013-0104.
  • N. S. Bondareva, M. A. Sheremet, H. F. Oztop, and N. A. Hamdeh, “Heat line visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater,” Int. J. Heat Mass Transfer, vol. 99, pp. 872–881, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.055.
  • G. Ibanez, A. Lopez, J. Pantoja, and J. Moreira, “Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation,” Int. J. Heat Mass Transfer, vol. 100, pp. 89–97, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.089.
  • M. Sajid, T. Javed, and T. Hayat, “MHD rotating flow of a viscous fluid over a shrinking surface,” Nonlinear Dyn., vol. 51, no. 1–2, pp. 259–265, 2007. DOI: 10.1007/s11071-007-9208-3.
  • Z. Abbas, T. Javed, M. Sajid, and N. Ali, “Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid,” J. Taiwan Inst. Chem. Engin., vol. 41, no. 6, pp. 644–650, 2010. DOI: 10.1016/j.jtice.2010.02.002.
  • T. Hayat, T. Javed, and Z. Abbas, “MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface,” Nonlinear Anal. RWA, vol. 10, no. 3, pp. 1514–1526, 2009. DOI: 10.1016/j.nonrwa.2008.01.019.
  • Y. Zhang and L. Zheng, “Analysis of MHD thermosolutal Marangoni convection with the heat generation and a first-order chemical reaction,” Chem. Engg. Sci., vol. 69, no. 1, pp. 449–455, 2012. DOI: 10.1016/j.ces.2011.10.069.
  • O. D. Makinde, W. A. Khan, and J. R. Culham, “MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer,” Int. J. Heat Mass Transfer, vol. 93, pp. 595–604, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.050.
  • J. C. Umavathi, M. A. Sheremen, and S. Mohiuddin, “Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction,” Eur. J. Mech. B/Fluids, vol. 58, pp. 98–108, 2016. DOI: 10.1016/j.euromechflu.2016.04.003.
  • T. Hayat, M. B. Ashraf, S. A. Shehzad, and A. Alsaedi, “Mixed convection flow of Casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink,” JAFM, vol. 8, no. 4, pp. 803–813, 2015. DOI: 10.18869/acadpub.jafm.67.223.22995.
  • R. Ravindran and N. Samyuktha, “Unsteady mixed convection flow over stretching sheet in presence of chemical reaction and heat generation or absorption with non-uniform slot suction or injection,” Appl. Math. Mech.-Engl. Ed., vol. 36, no. 10, pp. 1253–1272, 2015. DOI: 10.1007/s10483-015-1982-9.
  • M. K. Nayak, G. C. Dash, and L. P. Singh, “Heat and mass transfer effects on MHD viscoelastic fluid over a stretching sheet through porous mediums presence of chemical reaction,” Propulsion Power Res., vol. 5, no. 1, pp. 70–80, 2016. DOI: 10.1016/j.jppr.2016.01.006.
  • D. Anilkumar and S. Roy, “Unsteady mixed convection flow on a rotating cone in a rotating fluid,” APPl. Math. Comput., vol. 155, no. 2, pp. 545–561, 2004. DOI: 10.1016/S0096-3003(03)00799-9.
  • R. G. Hering and R. J. Grosh, “Laminar free convection from a non-isothermal cone,” Int. J. Heat Mass Transfer, vol. 5, no. 11, pp. 1059–1068, 1962. DOI: 10.1016/0017-9310(62)90059-5.
  • A. J. Chamkha and A. A. Mudhaf, “Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat genetation or absorption effects,” Int. J. Thermal Sci., vol. 44, no. 3, pp. 267–276, 2005. DOI: 10.1016/j.ijthermalsci.2004.06.005.
  • H. Ragueb and K. Mansouri, “A numerical study of viscous dissipation effect on non-Newtonian fluid flow inside elliptical duct,” Energy Conv. Manage., vol. 68, pp. 124–132, 2013. DOI: 10.1016/j.enconman.2012.12.031.
  • R. N. Barik and G. C. Dash, “Thermal radiation effect on an unsteady magnetohydrodynamic flow past inclined porous heated plate in the presence of chemical reaction and viscous dissipation,” APPl. Math. Comput., vol. 226, pp. 423–434, 2014. DOI: 10.1016/j.amc.2013.09.077.
  • S. Desale and V. H. Pradhan, “Numerical solution of boundary layer flow equation with viscous dissipation effect along a flat plate with variable temperature,” Proc. Engin., vol. 127, pp. 846–853, 2015. DOI: 10.1016/j.proeng.2015.11.421.
  • M. G. Reddy, P. Padma, and B. Shankar, “Effects of viscous dissipation and heat source on unsteady MHD flow over a stretching sheet,” Ain Shams Engin. J., vol. 6, no. 4, pp. 1195–1201, 2015. DOI: 10.1016/j.asej.2015.04.006.
  • Y. Lin, L. Zheng, and G. Chen, “Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation,” Powder Technol., vol. 274, pp. 324–333, 2015. DOI: 10.1016/j.powtec.2015.01.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.