Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 8
101
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of thermal radiation on natural convection in two connected circular cylinders suspended by NEPCM and porous media

&
Pages 469-481 | Received 22 Nov 2021, Accepted 13 May 2022, Published online: 20 Jun 2022

References

  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • P. H. Biwole, P. Eclache, and F. Kuznik, “Phase-change materials to improve solar panel's performance,” Energy Build., vol. 62, pp. 59–67, 2013. DOI: 10.1016/j.enbuild.2013.02.059.
  • K. Kant, A. Shukla, and A. Sharma, “Heat transfer studies of building brick containing phase change materials,” Solar Energy, vol. 155, pp. 1233–1242, 2017. DOI: 10.1016/j.solener.2017.07.072.
  • M. Qasim, Z. Ali, A. Wakif, and Z. Boulahia, “Numerical simulation of MHD peristaltic flow with variable electrical conductivity and joule dissipation using generalized differential quadrature method,” Commun. Theor. Phys., vol. 71, no. 5, pp. 509, 2019. DOI: 10.1088/0253-6102/71/5/509.
  • M. I. Afridi, M. Qasim, A. Wakif, and A. Hussanan, “Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: Utilization of the Chebyshev–Gauss–Lobatto spectral method,” Nanomaterials, vol. 9, no. 2, pp. 195, 2019. DOI: 10.3390/nano9020195.
  • M. Diouf and N. Sene, “Analysis of the financial chaotic model with the fractional derivative operator,” Complexity, vol. 2020, pp. 1–14, 2020. DOI: 10.1155/2020/9845031.
  • N. Sene, “Second-grade fluid model with Caputo–Liouville generalized fractional derivative,” Chaos Solitons Fractals, vol. 133, pp. 109631, 2020. DOI: 10.1016/j.chaos.2020.109631.
  • F. Selimefendigil and H. F. Öztop, “Numerical investigation and reduced order model of mixed convection at a backward facing step with a rotating cylinder subjected to nanofluid,” Comput. Fluids, vol. 109, pp. 27–37, 2015. DOI: 10.1016/j.compfluid.2014.12.007.
  • C. Maatki, K. Ghachem, L. Kolsi, A. K. Hussein, M. N. Borjini, and H. B. Aissia, “Inclination effects of magnetic field direction in 3D double-diffusive natural convection,” Appl. Math. Comput., vol. 273, pp. 178–189, 2016. DOI: 10.1016/j.amc.2015.09.043.
  • S. A. M. Mehryan, M. Ghalambaz, M. A. Ismael, and A. J. Chamkha, “Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane,” J. Magn. Magn. Mater., vol. 424, pp. 161–173, 2017. DOI: 10.1016/j.jmmm.2016.09.123.
  • F. Selimefendigil and H. F. Öztop, “Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder,” Int. J. Heat Mass Transfer, vol. 121, pp. 233–245, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.008.
  • A. S. Dogonchi, M. A. Sheremet, D. D. Ganji, and I. Pop, “Free convection of copper-water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1171–1184, 2019. DOI: 10.1007/s10973-018-7396-3.
  • F. Selimefendigil and H. F. Öztop, “MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation,” Phys. A Stat. Mech. Appl., vol. 534, pp. 122144, 2019. DOI: 10.1016/j.physa.2019.122144.
  • A. J. Chamkha and F. Selimefendigil, “MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material,” HFF, vol. 29, no. 10, pp. 3559–3583, 2019. DOI: 10.1108/HFF-07-2018-0364.
  • S. E. Ahmed, M. A. Mansour, A. M. Alwatban, and A. M. Aly, “Finite element simulation for MHD ferro-convective flow in an inclined double-lid driven L-shaped enclosure with heated corners,” Alexandria Eng. J., vol. 59, no. 1, pp. 217–226, 2020. DOI: 10.1016/j.aej.2019.12.026.
  • A. S. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas, S. M. Seyyedi, I. L. Animasaun, and D. D. Ganji, “The influence of different shapes of nanoparticle on Cu–H2O nanofluids in a partially heated irregular wavy enclosure,” Phys. A: Stat. Mech. Appl., vol. 540, pp. 123034, 2020. DOI: 10.1016/j.physa.2019.123034.
  • R. Du, P. Gokulavani, M. Muthtamilselvan, F. Al-Amri, and B. Abdalla, “Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu − Al2O3−H2O hybrid nanofluid,” Int. Commun. Heat Mass Transfer, vol. 116, pp. 104676, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104676.
  • P. Sudarsana Reddy and P. Sreedevi, “Entropy generation and heat transfer analysis of magnetic hybrid nanofluid inside a square cavity with thermal radiation,” Eur. Phys. J. Plus, vol. 136, no. 1, pp. 39, 2021. DOI: 10.1140/epjp/s13360-020-01025-z.
  • F. Selimefendigil and H. F. Öztop, “Analysis of hybrid nanofluid and surface corrugation in the laminar convective flow through an encapsulated PCM filled vertical cylinder and POD-based modeling,” Int. J. Heat Mass Transfer, vol. 178, pp. 121623, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121623.
  • G. R. Kefayati, “Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method,” Int. Commun. Heat Mass Transfer, vol. 40, pp. 67–77, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.024.
  • H. T. Xu, T. T. Wang, Z. G. Qu, J. Chen, and B. B. Li, “Lattice Boltzmann simulation of the double diffusive natural convection and oscillation characteristics in an enclosure filled with porous medium,” Int. Commun. Heat Mass Transfer, vol. 81, pp. 104–115, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.001.
  • A. Rahimi, A. Kasaeipoor, E. H. Malekshah, M. Palizian, and L. Kolsi, “Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties,” Therm. Sci. Eng. Prog., vol. 5, pp. 372–387, 2018. DOI: 10.1016/j.tsep.2018.01.005.
  • A. Purusothaman and E. H. Malekshah, “Lattice Boltzmann modeling of MHD free convection of nanofluid in a V-shaped microelectronic module,” Therm. Sci. Eng. Prog., vol. 10, pp. 186–197, 2019. DOI: 10.1016/j.tsep.2019.01.019.
  • K. Szewc, J. Pozorski, and A. Tanière, “Modeling of natural convection with smoothed particle hydrodynamics: Non-Boussinesq formulation,” Int. J. Heat Mass Transfer, vol. 54, no. 23–24, pp. 4807–4816, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.034.
  • A. M. Aly, A. J. Chamkha, S.-W. Lee, and A. F. Al-Mudhaf, “On mixed convection in an inclined lid-driven cavity with sinusoidal heated walls using the ISPH method,” Comput. Therm. Sci., vol. 8, no. 4, pp. 337–354, 2016. DOI: 10.1615/ComputThermalScien.2016016527.
  • A. M. Aly and Z. A. S. Raizah, “Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures,” Int. J. Mech. Sci., vol. 146–147, pp. 125–140, 2018. DOI: 10.1016/j.ijmecsci.2018.07.044.
  • Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, and M. B. Liu, “A finite particle method with particle shifting technique for modeling particulate flows with thermal convection,” Int. J. Heat Mass Transfer, vol. 128, pp. 1245–1262, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.074.
  • A. M. Aly and Z. A. S. Raizah, “Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles,” Phys. A Stat. Mech. Appl., vol. 537, pp. 122623, 2020. DOI: 10.1016/j.physa.2019.122623.
  • Z. A. S. Raizah, S. E. Ahmed, and A. M. Aly, “ISPH simulations of natural convection flow in E-enclosure filled with a nanofluid including homogeneous/heterogeneous porous media and solid particles,” Int. J. Heat Mass Transfer, vol. 160, pp. 120153, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120153.
  • A. M. Aly, S. Ahmed, and M. Transfer, “Effects of uniform circular motion on natural convection in a cavity filled with a nanofluid using incompressible SPH method,” Int. Commun. Heat Mass Transfer, vol. 116, pp. 104646, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104646.
  • F. Garoosi and A. Shakibaeinia, “An improved high-order ISPH method for simulation of free-surface flows and convection heat transfer,” Powder Technol., vol. 376, pp. 668–696, 2020. DOI: 10.1016/j.powtec.2020.08.074.
  • F. Garoosi and A. Shakibaeinia, “Numerical simulation of entropy generation due to natural convection heat transfer using kernel derivative-free (KDF) incompressible smoothed particle hydrodynamics (ISPH) model,” Int. J. Heat Mass Transfer, vol. 150, pp. 119377, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119377.
  • A. M. Aly, Z. A. S. Raizah, and S. E. Ahmed, “ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1173–1183, 2021. DOI: 10.1140/epjs/s11734-021-00050-y.
  • A. M. Aly and E. M. Mohamed, “Motion of circular cylinders during natural convection flow in X-shaped cavity filled with a nanofluid using ISPH method,” HFF, vol. 31, no. 5, pp. 1449–1474, 2021. DOI: 10.1108/HFF-04-2020-0231.
  • R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: Theory and application to non-spherical stars,” Mon. Notices R. Astronom. Soc., vol. 181, no. 3, pp. 375–389, 1977. DOI: 10.1093/mnras/181.3.375.
  • J. Monaghan and R. A. Gingold, “Shock simulation by the particle method SPH,” J. Comput. Phys., vol. 52, no. 2, pp. 374–389, 1983. DOI: 10.1016/0021-9991(83)90036-0.
  • S. J. Cummins and M. Rudman, “An SPH projection method,” J. Comput. Phys., vol. 152, no. 2, pp. 584–607, 1999. DOI: 10.1006/jcph.1999.6246.
  • Y. Fang, S. Kuang, X. Gao, and Z. Zhang, “Preparation and characterization of novel nanoencapsulated phase change materials,” Energy Convers. Manage., vol. 49, no. 12, pp. 3704–3707, 2008. DOI: 10.1016/j.enconman.2008.06.027.
  • B. Chen et al., “An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux,” Exp. Therm. Fluid Sci., vol. 32, no. 8, pp. 1638–1646, 2008. DOI: 10.1016/j.expthermflusci.2008.05.008.
  • W. Wu et al., “Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles,” Int. J. Heat Mass Transfer, vol. 58, no. 1–2, pp. 348–355, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.032.
  • H. R. Seyf, Z. Zhou, H. B. Ma, and Y. Zhang, “Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement,” Int. J. Heat Mass Transfer, vol. 56, no. 1–2, pp. 561–573, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.052.
  • C. J. Smith, P. M. Forster, and R. Crook, “Global analysis of photovoltaic energy output enhanced by phase change material cooling,” APPL. Energy, vol. 126, pp. 21–28, 2014. DOI: 10.1016/j.apenergy.2014.03.083.
  • P. Moreno, C. Solé, A. Castell, and L. F. Cabeza, “The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review,” Renew. Sustain. Energy Rev., vol. 39, pp. 1–13, 2014. DOI: 10.1016/j.rser.2014.07.062.
  • K. Pielichowska and K. Pielichowski, “Phase change materials for thermal energy storage,” Prog. Mater. Sci., vol. 65, pp. 67–123, 2014. DOI: 10.1016/j.pmatsci.2014.03.005.
  • W. Su, J. Darkwa, and G. Kokogiannakis, “Review of solid–liquid phase change materials and their encapsulation technologies,” Renew. Sustain. Energy Rev., vol. 48, pp. 373–391, 2015. DOI: 10.1016/j.rser.2015.04.044.
  • Y. Pahamli, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers,” Renew. Energy, vol. 97, pp. 344–357, 2016. DOI: 10.1016/j.renene.2016.05.090.
  • C. Liu, Z. Rao, J. Zhao, Y. Huo, and Y. Li, “Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement,” Nano Energy, vol. 13, pp. 814–826, 2015. DOI: 10.1016/j.nanoen.2015.02.016.
  • Y. Zhu et al., “Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling,” Appl. Energy, vol. 250, pp. 98–108, 2019. DOI: 10.1016/j.apenergy.2019.05.021.
  • C. J. Ho, Y.-C. Liu, T.-F. Yang, M. Ghalambaz, and W.-M. Yan, “Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink,” Int. J. Heat Mass Transfer, vol. 165, pp. 120717, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120717.
  • S. M. Hashem Zadeh, S. A. M. Mehryan, M. Sheremet, M. Ghodrat, and M. Ghalambaz, “Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material,” Int. J. Mech. Sci., vol. 178, pp. 105609, 2020. DOI: 10.1016/j.ijmecsci.2020.105609.
  • M. Ghalambaz, A. J. Chamkha, and D. Wen, “Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity,” Int. J. Heat Mass Transfer, vol. 138, pp. 738–749, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.037.
  • M. Ghalambaz, S. A. M. Mehryan, I. Zahmatkesh, and A. Chamkha, “Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity,” Int. J. Therm. Sci., vol. 157, pp. 106503, 2020. DOI: 10.1016/j.ijthermalsci.2020.106503.
  • Z. Raizah and A. M. Aly, “Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials,” Case Stud. Therm. Eng., vol. 24, pp. 100864, 2021. DOI: 10.1016/j.csite.2021.100864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.