Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 8
190
Views
1
CrossRef citations to date
0
Altmetric
Articles

Defect identification in heat transfer problems using boundary data

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 482-506 | Received 23 Nov 2021, Accepted 13 May 2022, Published online: 21 Jun 2022

References

  • S. Bureerat and N. Pholdee, “Inverse problem based differential evolution for efficient structural health monitoring of trusses,” Appl. Soft. Comput., vol. 66, pp. 462–472, 2018. DOI: 10.1016/j.asoc.2018.02.046.
  • H. Bang, S. Park, and H. Jeon, “Defect identification in composite materials via thermography and deep learning techniques,” Compos. Struct., vol. 246, pp. 112405, 2020. DOI: 10.1016/j.compstruct.2020.112405.
  • C. K. Hsieh and K. C. Su, “A methodology of predicting cavity geometry based on scanned surface temperature data—prescribed surface temperature at cavity side,” J. Heat Transf.-Trans. ASME, vol. 102, no. 2, pp. 324–329, 1980. DOI: 10.1115/1.3244282.
  • C. H. Huang and B. H. Chao, “An inverse geometry problem in identifying irregular boundary configurations,” Int. J. Heat Mass Transf., vol. 40, no. 9, pp. 2045–2053, 1997. DOI: 10.1016/S0017-9310(96)00280-3.
  • B. Yu, C. Xu, H. L. Zhou, and M. Cui, “A novel non-iterative method for estimating boundary conditions and geometry of furnace inner wall made of FGMs,” Appl. Therm. Eng., vol. 147, pp. 251–271, 2019. DOI: 10.1016/j.applthermaleng.2018.10.075.
  • B. Yu, Y. Tong, P. M. Hu, and Q. Gao, “A novel inversion approach for identifying the shape of the cavity by combining Gappy POD with direct inversion scheme,” Int. J. Heat Mass Transf, vol. 150, pp. 119365, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119365.
  • H. Fazeli and M. Mirzaei, “Shape identification problems on detecting of defects in a solid body using inverse heat conduction approach,” J. Mech. Sci. Technol., vol. 26, no. 11, pp. 3681–3690, 2012. DOI: 10.1007/s12206-012-0842-4.
  • M. A. Livani, N. Khaji, and P. Zakian, “Identification of multiple flaws in 2D structures using dynamic extended spectral finite element method with a universally enhanced meta-heuristic optimizer,” Struct. Multidisc. Optim., vol. 57, no. 2, pp. 605–623, 2018. DOI: 10.1007/s00158-017-1767-4.
  • C. P. Ma, T. T. Yu, L. V. Lich, and T. Q. Bui, “An effective computational approach based on XFEM and a novel three-step detection algorithm for multiple complex flaw clusters,” Comput. Struct., vol. 193, pp. 207–225, 2017. DOI: 10.1016/j.compstruc.2017.08.009.
  • W. H. Zhao, C. B. Du, and S. Y. Jiang, “An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm,” Comput. Meth. Appl. Mech. Eng., vol. 339, pp. 341–357, 2018. DOI: 10.1016/j.cma.2018.04.037.
  • H. Sun, H. Waisman, and R. Betti, “A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers,” Int. J. Numer. Meth. Eng., vol. 105, no. 13, pp. 1014–1040, 2016. DOI: 10.1002/nme.5006.
  • M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structure design using a homogenization method,” Comput. Meth. Appl. Mech. Eng., vol. 71, no. 2, pp. 197–224, 1988. DOI: 10.1016/0045-7825(88)90086-2.
  • M. P. Bendsøe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, no. 4, pp. 193–202, 1989. DOI: 10.1007/BF01650949.
  • Y. M. Xie and G. P. Steven, “A simple evolutionary procedure for structure optimization,” Comput. Struct., vol. 49, no. 5, pp. 885–896, 1993. DOI: 10.1016/0045-7949(93)90035-C.
  • X. Guo, W. S. Zhang, and W. L. Zhong, “Doing topology optimization explicitly and geometrically—a new moving morphable components based framework,” J. Appl. Mech., vol. 81, no. 8, pp. 081009, 2014.
  • W. S. Zhang, J. Yuan, J. Zhang, and X. Guo, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidisc. Optim., vol. 53, no. 6, pp. 1243–1260, 2016. DOI: 10.1007/s00158-015-1372-3.
  • S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Vol.1). New York: Springer, 2005.
  • M. Y. Wang, X. M. Wang, and D. M. Guo, “A level set method for structure topology optimization,” Comput. Meth. Appl. Mech. Eng., vol. 192, no. 1-2, pp. 227–246, 2003. DOI: 10.1016/S0045-7825(02)00559-5.
  • L. Zhang, L. Yang, and C. L. Fan, “A method on identification of multiple cavities in one finite body based on surface temperature measurements: a numerical and experimental study,” Numer. Heat Transf. A-Appl., vol. 75, no. 1, pp. 40–55, 2019. DOI: 10.1080/10407782.2018.1562743.
  • D. Liu and J. Du, “A moving morphable components based shape reconstruction framework for electrical impedance tomography,” IEEE Trans. Med. Imaging, vol. 38, no. 12, pp. 2937–2948, 2019. DOI: 10.1109/TMI.2019.2918566.
  • F. Santosa, “A level-set approach for inverse problems involving obstacles,” ESAIM: COCV, vol. 1, pp. 17–33, 1996. DOI: 10.1051/cocv:1996101.
  • M. Burger and S. J. Osher, “A survey on level set methods for inverse problems and optimal design,” Eur. J. Appl. Math., vol. 16, no. 2, pp. 263–301, 2005. DOI: 10.1017/S0956792505006182.
  • S. S. Nanthakumar, T. Lahmer, X. Zhuang, G. Zi, and T. Rabczuk, “Detection of material interfaces using a regularized level set method in piezoelectric structures,” Inverse Probl. Sci. Eng., vol. 24, no. 1, pp. 153–176, 2016. DOI: 10.1080/17415977.2015.1017485.
  • W. B. Li, W. T. Lu, J. L. Qian, and Y. G. Li, “A multiple level-set method for 3D inversion of magnetic data,” Geophysics, vol. 82, no. 5, pp. J61–J81, 2017. DOI: 10.1190/geo2016-0530.1.
  • S. Y. Wang, K. M. Lim, B. C. Khoo, and M. Y. Wang, “An extended level set method for shape and topology optimization,” J. Comput. Phys., vol. 221, no. 1, pp. 395–421, 2007. DOI: 10.1016/j.jcp.2006.06.029.
  • P. Wei, Z. Y. Li, X. P. Li, and M. Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidisc. Optim., vol. 58, no. 2, pp. 831–849, 2018. DOI: 10.1007/s00158-018-1904-8.
  • A. Aghasi, M. Kilmer, and E. L. Miller, “Parametric level set method for inverse problems,” SIAM J. Imaging Sci., vol. 4, no. 2, pp. 618–650, 2011. DOI: 10.1137/100800208.
  • D. Liu, D. Smyl, and J. F. Du, “A parametric level set based approach to difference imaging in electrical impedance tomography,” IEEE Trans. Med. Imaging, vol. 38, no. 1, pp. 145–155, 2019. DOI: 10.1109/TMI.2018.2857839.
  • M. Eliasof, A. Sharf, and E. Treister, “Multimodal 3D shape reconstruction under calibration uncertainty using parametric level set methods,” SIAM J. Imaging Sci., vol. 13, no. 1, pp. 265–290, 2020. DOI: 10.1137/19M1257895.
  • G. L. Lin, X. L. Cheng, and Y. Zhang, “A parametric level set based collage method for an inverse problem in elliptic partial differential equations,” J. Comput. Appl. Math., vol. 340, pp. 101–121, 2018. DOI: 10.1016/j.cam.2018.02.008.
  • R. A. Willoughby, “Solutions of ill-posed problems (AN Tikhonov and VY Arsenin)”. SIAM Review, vol. 21, no. 2, pp. 266, 1979.
  • P. C. Hansen, “The truncated SVD as a method for regularization,” BIT Numer. Math., vol. 27, no. 4, pp. 534–53, 1987. DOI: 10.1007/BF01937276.
  • M. Hanke, “A regularizing Levenberg – Marquardt scheme, with applications to inverse groundwater filtration problems,” Inverse. Probl., vol. 13, no. 1, pp. 79–95, 1997. DOI: 10.1088/0266-5611/13/1/007.
  • K. Svanberg, MMA and GCMMA, versions September 2007, Optimization and Systems Theory, p. 104, 2007.
  • K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Int. J. Numer. Meth. Eng., vol. 24, no. 2, pp. 359–373, 1987. DOI: 10.1002/nme.1620240207.
  • H. Wendland, “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree,” Adv. Comput. Math., vol. 4, no. 1, pp. 389–396, 1995. DOI: 10.1007/BF02123482.
  • J. N. Reddy and D. K. Gartling, The finite element method in heat transfer and fluid dynamics. CRC press, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.