Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 3
191
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Equivalent heat source approach in a quasi-steady-state laser-GMAW hybrid welding simulation

, , , &
Pages 285-303 | Received 03 Jan 2022, Accepted 25 May 2022, Published online: 01 Aug 2022

References

  • B. Yang et al., “Interfacial microstructure and mechanical properties of laser-welded 6061Al/AISI304 dissimilar lap joints via beam oscillation,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 14630–14644, 2020. DOI: 10.1016/j.jmrt.2020.10.064.
  • L. F. Mei, G. Y. Chen, X. Z. Jin, Y. Zhang, and Q. Wu, “Research on laser welding of high-strength galvanized automobile steel sheets,” Opt. Lasers Eng., vol. 47, no. 11, pp. 1117–1124, 2009. DOI: 10.1016/j.optlaseng.2009.06.016.
  • M. Hietala et al., “Microstructural evolution and tensile strength of laser-welded butt joints of ultra-high strength steels: Low and high alloy steels,” KEM, vol. 883, pp. 250–257, 2021. DOI: 10.4028/www.scientific.net/KEM.883.250.
  • X. D. Hu, Y. C. Yang and M. Song, “Experimental and numerical investigations on the thermomechanical behavior of 304 stainless steel/Q345R composite plate weld joint,” Materials, vol. 12, no. 21, p. 3489, 2019. DOI: 10.3390/ma12213489.
  • B. Kaewprachum and P. Srisungsitthisunti, “Real-time process monitoring of laser welding by infrared camera and image processing,” KEM, vol. 856, pp. 160–168, 2020. DOI: 10.4028/www.scientific.net/KEM.856.160.
  • L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des., vol. 108, pp. 707–717, 2016. DOI: 10.1016/j.matdes.2016.07.053.
  • J. Z. Li et al., “Analysis of vapor plume and keyhole dynamics in laser welding stainless steel with beam oscillation,” Infrared Phys. Technol., vol. 113, p. 103536, 2021. DOI: 10.1016/j.infrared.2020.103536.
  • W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol., vol. 212, no. 1, pp. 262–275, 2012. DOI: 10.1016/j.jmatprotec.2011.09.011.
  • J. H. Cho and S. J. Na, “Three-dimensional analysis of molten pool in GMA-laser hybrid welding,” Weld. J., vol. 88, no. 2, pp. 35–43, 2009.
  • H. T. Zhang and C. S. Wu, “Analysis of weld pool and keyhole behaviors in laser-GMAW hybrid welding,” Aeronaut. Manuf. Technol., vol. 19, pp. 45–51, 2016.
  • H. L. Wei, “Numerical and experimental study of hybrid laser-GMA welding of low alloy steels.” Tianjin University, Tianjin, China, 2014.
  • A. Artinov, M. Bachmann, and M. Rethmeier, “Transient process simulation of heat transfer in laser beam welding with an equivalent heat source,” COMSOL Conference in Rotterdam, 2017.
  • S. Y. Pang, X. Chen, J. X. Zhou, X. Shao, and C. Wang, “3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect,” Opt. Lasers Eng., vol. 74, pp. 47–58, 2015. DOI: 10.1016/j.optlaseng.2015.05.003.
  • S. Y. Pang, X. Chen, W. Li, et al., “Efficient multiple time scale method for modeling compressible vapor plume dynamics in side transient keyhole during fiber laser[J,” ]. Optics and Lasers in Engineering, vol. 77, pp. 203–204, 2016. DOI: 10.1016/j.optlastec.2015.09.024.
  • S. Y. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl., vol. 27, no. 2, p. 022007, 2015. DOI: 10.2351/1.4913455.
  • R. Rai, J. W. Elmer, T. A. Palmer, and T. DebRoy, “Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium,” J. Phys. D: Appl. Phys., vol. 40, no. 18, pp. 5753–5766, 2007. DOI: 10.1088/0022-3727/40/18/037.
  • M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminum,” COMSOL Conference in Milan, 2012.
  • M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Multiphysics process simulation of the electromagnetic supported high power laser beam welding of austenitic stainless steel,” //COMSOL Conference in Rotterdam, 2013.
  • Y. W. Ai, P. Jiang, C. M. Wang, G. Mi, and S. Geng, “Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding,” Int. J. Heat Mass Transfer, vol. 126, pp. 779–789, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.031.
  • J. Goldak, A. Chakravarti, and M. Bibby, “A new finite element model for welding heat sources,” MTB, vol. 15, no. 2, pp. 299–305, 1984. DOI: 10.1007/BF02667333.
  • Y. M. Zhang, Z. H. Shen, and X. H. Ni, “Modeling and simulation on long pulse laser drilling processing,” Int. J. Heat Mass Transfer, vol. 73, pp. 429–437, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.037.
  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • C. S. Wu, “Fluid flow and heat transfer in GMA weld pools,” Weld. J., vol. 67, no. 3, pp. 70–75, 1988.
  • Z. Yang and T. Debroy, “Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel,” Metall. Mater. Trans. B, vol. 30, no. 3, pp. 483–493, 1999. DOI: 10.1007/s11663-999-0082-x.
  • J. J. Blecher, T. A. Palmer, and T. Debroy, “Porosity in thick section alloy 690 welds—Experiments, modeling, mechanism, and remedy,” Weld. J., vol. 95, no. 1, pp. 17–26, 2016.
  • X. He, J. T. Norris, P. W. Fuerschbach, and T. Debroy, “Liquid metal expulsion during laser spot welding of 304 stainless steel,” J. Phys. D: Appl. Phys., vol. 39, no. 3, pp. 525–534, 2006. DOI: 10.1088/0022-3727/39/3/016.
  • A. De and T. Debroy, “Improving reliability of heat and fluid flow calculation during conduction mode laser spot welding by multivariable optimisation,” Sci. Technol. Weld. Joining, vol. 11, no. 2, pp. 143–153, 2006. DOI: 10.1179/174329306X84346.
  • A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • P. C. Carman, “Fluid flow through granular beds,” Chem. Eng. Res. Des., vol. 75, no. 1, pp. S32–S48, 1997. DOI: 10.1016/S0263-8762(97)80003-2.
  • S. Kou and D. K. Sun, “Fluid flow and weld penetration in stationary arc welds,” MTA, vol. 16, no. 2, pp. 203–213, 1985. DOI: 10.1007/BF02816047.
  • G. X. Xu et al., “Modelling of bead hump formation in high speed gas metal arc welding,” Sci. Technol. Weld. Joining, vol. 21, no. 8, pp. 700–710, 2016. DOI: 10.1080/13621718.2016.1146427.
  • J. H. Arakeri, “Bernoulli's equation,” Reson, vol. 5, no. 8, pp. 54–71, 2000. DOI: 10.1007/BF02837937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.