Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 3
167
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance investigation of supercritical methane in minichannel heat sink on flight vehicle actuator under geometry effect of cross section

, , , , &
Pages 315-330 | Received 09 Jan 2022, Accepted 25 May 2022, Published online: 14 Jul 2022

References

  • Z. G. Gao et al., “Numerical investigation of supercritical methane in helically coiled tube on regenerative cooling of liquid rocket electromechanical actuator,” Cryogenics, vol. 106, pp. 103023, 2020. DOI: 10.1016/j.cryogenics.2019.103023.
  • A. Tikadar et al., “Enhancing thermal-hydraulic performance of counter flow mini-channel heat sinks utilizing secondary flow: Numerical study with experimental validation,” Int. Commun. Heat Mass Transfer, vol. 111, pp. 104447, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104447.
  • S. G. Kandlikar, “Fundamental issues related to flow boiling in mini-channels and microchannels,” Exp. Therm. Fluid Sci., vol. 26, no. 24, pp. 389–407, 2002. DOI: 10.1016/S0894-1777(02)00150-4.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • V. L. Vinodhan and K. S. Rajan, “Computational analysis of new microchannel heat sink configurations,” Energy Convers. Manag., vol. 86, pp. 595–604, 2014. DOI: 10.1016/j.enconman.2014.06.038.
  • Y. H. Pan, R. Zhao, X. H. Fan, Y. L. Nian, and W. L. Cheng, “Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink,” Int. J. Heat Mass Transfer, vol. 163, pp. 120461, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120461.
  • L. V. Vajravel, S. Kuppusamy Swaminathan, S. Baskaran, and R. Kalpoondi Sekar, “Experimental investigations on heat transfer in a new minichannel heat sink,” Int. J. Therm. Sci., vol. 140, pp. 144–153, 2019. DOI: 10.1016/j.ijthermalsci.2019.02.029.
  • S. Kim, E. Choi, and Y. I. Cho, “The effect of header shapes on the flow distribution in a manifold for electronic packaging applications,” Int. Commun. Heat Mass Transfer, vol. 22, no. 3, pp. 329–341, 1995. DOI: 10.1016/0735-1933(95)00024-S.
  • S. Kumar and P. K. Singh, “A novel approach to manage temperature non-uniformity in minichannel heat sink by using intentional flow maldistribution,” Appl. Therm. Eng., vol. 163, pp. 114403, 2019. DOI: 10.1016/j.applthermaleng.2019.114403.
  • J. Xu, Y. Song, W. Zhang, H. Zhang, and Y. Gan, “Numerical simulations of interrupted and conventional microchannel heat sinks,” Int. J. Heat Mass Transfer, vol. 51, no. 2526, pp. 5906–5917, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.05.003.
  • M. I. Hasan, A. A. Rageb, M. Yaghoubi, and H. Homayoni, “Influence of channel geometry on the performance of a counter flow microchannel heat exchanger,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1607–1618, 2009. DOI: 10.1016/j.ijthermalsci.2009.01.004.
  • A. Muhammad, D. Selvakumar, and J. Wu, “Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink,” Int. J. Heat Mass Transfer, vol. 150, pp. 119265, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119265.
  • R. Shah and A. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, 1978. New York.
  • W. Q. Tao, Y. L. He, Q. W. Wang, Z. G. Qu, and F. Q. Song, “A unified analysis on enhancing single-phase convective heat transfer with field synergy principle,” Int. J. Heat Mass Transfer, vol. 45, no. 24, pp. 4871–4879, 2002. DOI: 10.1016/S0017-9310(02)00173-4.
  • K. Hooman, “Heat and fluid flow in a rectangular microchannel filled with a porous medium,” Int. J. Heat Mass Transfer, vol. 51, no. 2526, pp. 5804–5810, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.05.010.
  • D. Lelea, “The tangential micro-heat sink with multiple fluid inlets,” Int. Commun. Heat Mass Transfer, vol. 39, no. 2, pp. 190–195, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.12.005.
  • S. Kumar and P. K. Singh, “Effects of flow inlet angle on flow maldistribution and thermal performance of water cooled mini-channel heat sink,” Int. J. Therm. Sci., vol. 138, pp. 504–511, 2019. DOI: 10.1016/j.ijthermalsci.2019.01.014.
  • H. T. Wang, Z. H. Chen, and J. G. Gao, “Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks,” Appl. Therm. Eng., vol. 107, pp. 870–879, 2016. DOI: 10.1016/j.applthermaleng.2016.07.039.
  • P. Naphon and L. Nakharintr, “Heat transfer of nanofluids in the mini-rectangular fin heat sinks,” Int. Commun. Heat Mass Transfer, vol. 40, pp. 25–31, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.012.
  • G. L. Morini, “Single-phase convective heat transfer in microchannels: A review of experimental results,” Int. J. Therm. Sci., vol. 43, no. 7, pp. 631–651, 2004. DOI: 10.1016/j.ijthermalsci.2004.01.003.
  • S. S. Bertsch, E. A. Groll, and S. V. Garimella, “Review and comparative analysis of studies on saturated flow boiling in small channels,” Nanoscale Microscale Thermophys. Eng., vol. 12, no. 3, pp. 187–227, 2008. DOI: 10.1080/15567260802317357.
  • J. R. Thome, “Boiling in microchannels: A review of experiment and theory,” Int. J. Heat Fluid Flow, vol. 25, no. 2, pp. 128–139, 2004. DOI: 10.1016/j.ijheatfluidflow.2003.11.005.
  • P. Zhang, “Flow and heat transfer characteristics of liquid nitrogen in mini-/microchannels,” Heat Transfer Eng., vol. 34, no. 23, pp. 204–212, 2013. DOI: 10.1080/01457632.2013.703543.
  • J. Bai et al., “Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer,” Appl. Therm. Eng., vol. 175, pp. 115379, 2020. DOI: 10.1016/j.applthermaleng.2020.115379.
  • J. W. Ackermam, “Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes,” J. Heat Transfer, vol. 92, pp. 490–497, 1970.
  • K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, and S. Yoshida, “Forced convective heat transfer to supercritical water flowing in tubes,” Int. J. Heat Mass Transfer, vol. 15, no. 12, pp. 2575–2593, 1972. DOI: 10.1016/0017-9310(72)90148-2.
  • G. Liu, Y. Huang, J. Wang, and F. Lv, “Effect of buoyancy and flow acceleration on heat transfer of supercritical CO2 in natural circulation loop,” Int. J. Heat Mass Transfer, vol. 91, pp. 640–646, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.08.009.
  • L. Chai, G. Xia, L. Wang, M. Zhou, and Z. Cui, “Heat transfer enhancement in microchannel heat sinks with periodic expansion-constriction cross-sections,” Int. J. Heat Mass Transfer, vol. 62, pp. 741–751, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.