Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 6
392
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Numerical investigation of the flow and thermal behavior of impinging single and multi-orifice synthetic jets with different waveforms

, , , , &
Pages 573-593 | Received 16 Feb 2022, Accepted 11 Jul 2022, Published online: 26 Jul 2022

References

  • M. Chaudhari, B. Puranik and A. Agrawal, “Heat transfer characteristics of synthetic jet impingement cooling,” Int. J. Heat Mass Transf., vol. 53, no. 5–6, pp. 1057–1069, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.005.
  • P. K. Singh, M. Renganathan, H. Yadav, S. K. Sahu, P. K. Upadhyay and A. Agrawal, “An experimental investigation of the flow-field and thermal characteristics of synthetic jet impingement with different waveforms,” Int. J. Heat Mass Transf., vol. 187, pp. 122534, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122534.
  • M. Jabbal, J. Wu and S. Zhong, “The performance of round synthetic jets in quiescent flow,” Aero. J., vol. 3043, pp. 385–393, 2006.
  • L. Wang, L. H. Feng, J. J. Wang and T. Li, “Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low Reynolds number,” Exp. Therm. Fluid Sci., vol. 98, pp. 731–743, 2018. DOI: 10.1016/j.expthermflusci.2018.06.021.
  • D. Jagannatha, R. Narayanaswamy and T. T. Chandratilleke, “Analysis of a synthetic jet-based electronic cooling module,” Num. Heat Transf. Part A: Appl., vol. 56, no. 3, pp. 211–229, 2009. DOI: 10.1080/10407780903163702.
  • H. Yadav, A. Agrawal and A. Srivastava, “Mixing and entrainment characteristics of a pulse jet,” Int. J. Heat Fluid Flow., vol. 61, pp. 749–761, 2016. DOI: 10.1016/j.ijheatfluidflow.2016.08.006.
  • H. Yadav and A. Agrawal, “Effect of pulsation on the near flow field of a submerged water jet,” Sadhna, vol. 43, no. 44, pp. 1–8, 2018.
  • M. Hadžiabdić and K. Hanjalić, “Vortical structure and heat transfer in a round impinging jet,” J. Fluid Mech., vol. 596, pp. 221–260, 2008. DOI: 10.1017/S002211200700955X.
  • H. Yadav and A. Agrawal, “Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jets,” Phys. Fluid., vol. 30, no. 3, pp. 035107, 2018. DOI: 10.1063/1.5001161.
  • P. K. Singh, S. K. Sahu, P. K. Upadhyay and A. K. Jain, “Experimental investigation on thermal characteristics of hot surface by synthetic jet impingement,” App. Therm. Eng., vol. 165, pp. 114596, 2020. DOI: 10.1016/j.applthermaleng.2019.114596.
  • P. Sharma, P. K. Singh, S. K. Sahu and H. Yadav, “A critical review on flow and heat transfer characteristics of synthetic jet,” Trans. Ind. Nat. Acad. Eng., vol. 7, pp. 61–92, 2021. DOI: 10.1007/s41403-021-00264-5.
  • E. Smyk and M. Markowicz, “Acoustic and flow aspect of synthetic jet actuators with Chevron Orifice,” Appl. Sci., vol. 11, no. 2, pp. 652, 2021. DOI: 10.3390/app11020652.
  • M. Chaudhari, G. Verma, B. Puranik and A. Agrawal, “Frequency response of a synthetic jet cavity,” Exp. Therm. Fluid Sci., vol. 33, no. 3, pp. 439–448, 2009. DOI: 10.1016/j.expthermflusci.2008.10.008.
  • U. S. Bhapkar, A. Srivastava and A. Agrawal, “Acoustic and heat transfer aspect of an inclined impinging synthetic jet,” Int. J. Therm. Sci., vol. 74, pp. 145–155, 2013. DOI: 10.1016/j.ijthermalsci.2013.06.007.
  • M. Hatami, F. B. Tehrani, A. Abouata and A. M. Ahmar, “Investigation of geometry and dimensionless parameters effect on the flow field and heat transfer of impinging synthetic jets,” Int. J. Therm. Sci., vol. 127, pp. 41–52, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.011.
  • E. Smyk, L. Przeszlowski and P. M. Strzelczyk, “Impact of the confinement plate on the synthetic jet,” AIP Adv., vol. 10, no. 10, pp. 105204, 2020. DOI: 10.1063/5.0022813.
  • M. Chaudhari, B. Puranik and A. Agrawal, “Multiple orifice synthetic jet for improvement in impingement heat transfer,” Int. J. Heat Mass Transf., vol. 54, no. 9-10, pp. 2056–2065, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.023.
  • P. K. Singh, S. K. Sahu and P. K. Upadhyay, “Experimental investigation of the thermal behavior a single-cavity and multiple orifice synthetic jet impingement driven by electromagnetic actuator for electronics cooling,” Exp. Heat Transf., vol. 35, no. 2, pp. 132–158, 2022. 2020. DOI: 10.1080/08916152.2020.1825546.
  • H. Yadav, A. Joshi, M. Chaudhari and A. Agrawal, “An experimental study of a multi-orifice synthetic jet with application to cooling of compact devices,” AIP Adv., vol. 9, no. 12, pp. 125108–11, 2019. DOI: 10.1063/1.5128776.
  • C. S. Greco, G. Catrillo, C. M. Crispo, T. Astarita and G. Cardone, “Investigation of impinging single and twin circular synthetic jets flow field,” Exp. Therm. Fluid Sci., vol. 74, pp. 354–367, 2016. DOI: 10.1016/j.expthermflusci.2015.12.019.
  • E. Fanning, T. Persoon and D. B. Murray, “Heat transfer and flow characteristics of a pair of adjacent impinging synthetic jets,” Int. J. Heat Fluid Flow., vol. 54, pp. 153–166, 2015. DOI: 10.1016/j.ijheatfluidflow.2015.05.005.
  • X. Deng, Z. B. Luo, Z. X. Xia and W. J. Gong, “Experimental investigation on the flow regime and impingement heat transfer of dual synthetic jet,” Int. J. Therm. Sci., vol. 145, pp. 105864, 2019. DOI: 10.1016/j.ijthermalsci.2019.02.039.
  • L. Mangate, H. Yadav, A. Agrawal and M. Chaudhari, “Experimental investigation on thermal and flow characteristics of synthetic jet with multiple orifice of different shapes,” Int. J. Therm. Sci., vol. 140, pp. 344–357, 2019. DOI: 10.1016/j.ijthermalsci.2019.02.036.
  • G. Ceglia, et al., “Flow characterization of a array of finite-span synthetic jets in quiescent ambient,” Exp. Therm. Fluid Sci., vol. 119, pp. 110208, 2020. DOI: 10.1016/j.expthermflusci.2020.110208.
  • P. K. Singh, S. K. Sahu, P. K. Upadhyay and S. Singh, “Experimental and numerical investigation of the thermal performance of impinging synthetic jets with different waveforms,” Exp. Heat Transf., pp. 1–21, 2021. DOI: 10.1080/08916152.2021.1984341.
  • H. Herwig and G. Middelberg, “The physics of unsteady jet impingement and its heat transfer performance,” Acta Mech., vol. 201, no. 1-4, pp. 171–184, 2008. DOI: 10.1007/s00707-008-0080-0.
  • L. Geng, C. Zheng and J. Zhou, “Heat transfer characteristics of impinging jets: The influence of unsteadiness with different waveforms,” Int. Comm. Heat Mass Transf., vol. 66, pp. 105–113, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.017.
  • Y. Zhang, P. Li and Y. Xie, “Numerical investigation of the heat transfer characteristics of the impinging synthetic jets with different waveforms,” Int. J. Heat. Mass. Transf., vol. 125, pp. 1017–1027, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.120.
  • H. Tang and S. Zhong, “2D numerical study of circular synthetic jets in a quiescent flow,” Aero. J., vol. 2938, pp. 89–97, 2005.
  • F. Capuano, A. Palumbo and L. D. Luca, “Comparative study of spectral-element and finite-volume solvers for direct numerical simulation of synthetic jets,” Comp. Fluids., vol. 179, pp. 228–237, 2019. DOI: 10.1016/j.compfluid.2018.11.002.
  • A. Miró, M. Soria, J. C. Cajas and I. Rodríguez, “Numerical study of heat transfer from a synthetic impinging jet with a detail model of the actuator membrane,” Int. J. Therm. Sci., vol. 136, pp. 287–298, 2019. DOI: 10.1016/j.ijthermalsci.2018.10.017.
  • R. B. Kotapati, R. Mittal and L. N. Cattafesta, “Numerical study of a transitional synthetic jet in quiescent external flow,” J. Fluid Mech., vol. 581, pp. 287–321, 2007. DOI: 10.1017/S0022112007005642.
  • D. Singh, B. Premchandran and S. Kohli, “Numerical simulation of the jet impingement cooling of a circular cylinder,” Num. Heat Transf., Part A: Appl., vol. 64, no. 2, pp. 153–185, 2013. DOI: 10.1080/10407782.2013.772869.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • M. Jain, B. Puranik and A. Agrawal, “A Numerical investigation of effects of cavity and orifice parameters on the charatcteristics of a synthetic jet flow,” Sens. Act. A: Phys., vol. 165, no. 2, pp. 351–366, 2011. DOI: 10.1016/j.sna.2010.11.001.
  • Fluent 19.2, User’s Guide, Canonsburg, PA: Ansys Fluent Inc., 2018.
  • B. L. Smith and A. Glezer, “The formation and evolution of synthetic jets,” Phy Fluids, vol. 10, no. 9, pp. 2281–2297, 1998. DOI: 10.1063/1.869828.
  • M. B. Gillespie, W. Z. Black, C. Rinehart and A. Glezer, “Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jet,” J. Heat Transf, vol. 128, no. 10, pp. 990–1000, 2006. DOI: 10.1115/1.2345423.
  • A. Pavlova and M. Amitay, “Electronic cooling using synthetic jet impingement,” J. Heat Transf., vol. 128, no. 9, pp. 897–907, 2006. DOI: 10.1115/1.2241889.
  • M. Kim, H. Lee and W. Hwang, “Experimental study on the flow interaction between two synthetic jets emanating from a dual round orifice,” Exp. Therm. Fluid Sci., vol. 126, pp. 110400, 2021. DOI: 10.1016/j.expthermflusci.2021.110400.
  • T. X. Ming and Z. J. Zhou, “Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator,” Exp. Therm. Fluid Sci., vol. 48, pp. 134–146, 2013.
  • W. R. Quinn, M. Azad and D. Groulx, “Mean streamwise centerline velocity decay and entrainment in triangular and circular jets,” AIAA J., vol. 51, no. 1, pp. 70–79, 2013. DOI: 10.2514/1.J051559.
  • G. Krishnan and K. Mohseni, “An experimental and analytical investigation of rectangular synthetic jets,” J. Fluid Eng., vol. 131, pp. 121101–1, 2009.
  • T. V. Buren, E. Whalen and M. Amitay, “Vortex formation of a finite-span synthetic jet: High reynolds number,” Phys. Fluids., vol. 26, no. 1, pp. 014101, 2014. DOI: 10.1063/1.4859895.
  • J. M. Shuster and D. R. Smith, “Experimental study of the formation and scaling of a round synthetic jet,” Phys. Fluids., vol. 19, no. 4, pp. 045109, 2007. DOI: 10.1063/1.2711481.
  • S. R. Kumar, A. Sharma and A. Agrawal, “Simulation of flow around a row of square cylinders,” J. Fluid Mech., vol. 606, pp. 369–397, 2008. DOI: 10.1017/S0022112008001924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.