Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 10
124
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Natural convective nanofluid flow characteristics with Brownian motion effect in an annular space between confocal elliptic cylinders

&
Pages 1130-1145 | Received 19 Mar 2022, Accepted 11 Jul 2022, Published online: 16 Aug 2022

References

  • H. U. Kang, S. H. Kim and J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume,” Exp. Heat Transfer, vol. 19, no. 3, pp. 181–191, 2006. DOI: 10.1080/08916150600619281.
  • V. Velagapudi, K. R. Konijeti and K. S. C. Aduru, “Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids,” Therm. Sci., vol. 12, no. 2, pp. 27–37, 2008. DOI: 10.2298/TSCI0802027V.
  • V. Y. Rudyak, A. Belkin and E. Tomilina, “On the thermal conductivity of nanofluids,” Tech. Phys. Lett., vol. 36, no. 7, pp. 660–662, 2010. DOI: 10.1134/S1063785010070229.
  • L. Godson, B. Raja, D. Mohan Lal and S. Wongwises, “Enhancement of heat transfer using nanofluids—an overview,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 629–641, 2010. DOI: 10.1016/j.rser.2009.10.004.
  • A. Turgut, I. Tavman, M. Chirtoc, H. Schuchmann, C. Sauter and S. Tavman, “Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids,” Int. J. Thermophys., vol. 30, no. 4, pp. 1213–1226, 2009. DOI: 10.1007/s10765-009-0594-2.
  • A. Nayak, R. Singh and P. Kulkarni, “Measurement of volumetric thermal expansion coefficient of various nanofluids,” Tech. Phys. Lett., vol. 36, no. 8, pp. 696–698, 2010. DOI: 10.1134/S1063785010080055.
  • C. Murugesan and S. Sivan, “Limits for thermal conductivity of nanofluids,” Therm. Sci., vol. 14, no. 1, pp. 65–71, 2010. DOI: 10.2298/TSCI1001065M.
  • K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • K. S. Hwang, J. H. Lee and S. P. Jang, “Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 4003–4010, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.037.
  • C. J. Ho, M. W. Chen and Z. W. Li, “Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity,” Int. J. Heat Mass Transfer, vol. 51, no. 17-18, pp. 4506–4516, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.12.019.
  • J. H. Lee and T. S. Lee, “Natural convection in the annuli between horizontal confocal elliptic cylinders,” Int. J. Heat Mass Transfer, vol. 24, pp. 1739–1742, 1981.
  • M. M. Elshamy, M. N. Ozisik and J. P. Coulter, “Correlation for laminar natural convection between confocal horizontal elliptical cylinders,” Numer. Heat Transfer, Part A, vol. 18, no. 1, pp. 95–112, 1990. DOI: 10.1080/10407789008944785.
  • T. Tayebi, A. J. Chamkha, M. Djezzar and A. Bouzerzour, “Natural convective nanofluid flow in an annular space between confocal elliptic cylinders,” J. Thermal Sci. Eng. Appl., vol. 9, pp. 011010–9, 2016.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transfer Part A: Appl., vol. 70, no. 10, pp. 1141–1156, 2016. DOI: 10.1080/10407782.2016.1230423.
  • T. Tayebi, A. J. Chamkha and M. Djezzar, “Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall,” Sci. Iranica, vol. 26, no. 5, pp. 2770–2783, 2018. DOI: 10.24200/sci.2018.21069.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transfer, Part A, vol. 71, no. 11, pp. 1159–1173, 2017. DOI: 10.1080/10407782.2017.1337990.
  • Seyyed Masoud Seyyedi, A. S. Dogonchi, M. Hashemi-Tilehnoee, D. D. Ganji and A. J. Chamkha, “Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, no. 11, pp. 4811–4836, 2020. DOI: 10.1108/HFF-11-2019-0845.
  • T. Tayebi and A. J. Chamkha, “Magnetohydrodynamic natural Convection heat transfer of hybrid nanofluid in a square Enclosure in the presence of a Wavy circular conductive cylinder,” J. Thermal Sci. Eng. Appl., vol. 12, no. 3, pp. 031009. 2020. DOI: 10.1115/1.4044857.
  • A. S. Dogonchi, et al., “Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles,” HFF, vol. 30, no. 2, pp. 659–680, 2020. DOI: 10.1108/HFF-05-2019-0390.
  • A. J. Chamkha, A. S. Dogonchi and D. D. Ganji, “Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: A numerical study using CVFEM,” Appl. Sci., vol. 8, no. 12, pp. 2396, 2018. DOI: 10.3390/app8122396.
  • S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer, Trans. ASME, vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” J. Appl. Phys., vol. 95, no. 11, pp. 6492–6494, 2004. DOI: 10.1063/1.1736319.
  • R. K. Shukla and V. K. Dhir, “Effect of Brownian motion on thermal conductivity of nanofluids,” J. Heat Transfer, vol. 130, no. 4, pp. 042406-1–042406-13, 2008. DOI: 10.1115/1.2818768.
  • A. S. Dogonchi, S. M. Seyyedi, M. Hashemi-Tilehnoee, A. J. Chamkha and D. D. Ganji, “Investigation of natural convection of magnetic nanofluid in an enclosure with a porous medium considering Brownian motion,” Case Stud. Therm. Eng., vol. 14, pp. 100502, 2019. DOI: 10.1016/j.csite.2019.100502.
  • H. F. Oztop and K. Al-Salem, “A review on entropy generation in natural and mixed convection heat transfer for energy systems,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 911–920, 2012. DOI: 10.1016/j.rser.2011.09.012.
  • R. Ellahi, S. Z. Alamri, A. Basit and A. Majeed, “Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 476–482, 2018. DOI: 10.1080/16583655.2018.1483795.
  • O. Mahian, H. Oztop, I. Pop, S. Mahmud and S. Wongwises, “Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature,” Int. Commun. Heat Mass Transf., vol. 44, pp. 87–92, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.03.005.
  • O. Mahian, et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transf., vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • M. M. Bhatti, T. Abbas, M. M. Rashidi and M. E. S. Ali, “Numerical simulation of entropy generation with thermal radiation on MHD carreau nanofluid towards a shrinking sheet,” Entropy, vol. 18, no. 6, pp. 200, 2016. DOI: 10.3390/e18060200.
  • T. Tayebi, A. Sattar Dogonchi, N. Karimi, H. Ge-JiLe, A. J. Chamkha and Y. Elmasry, “Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins,” Sustain. Energy Technol. Assess., vol. 46, pp. 101274, 2021. DOI: 10.1016/j.seta.2021.101274.
  • H. Aminfar, R. Motallebzadeh and A. Farzadi, “The study of the effects of thermophoretic and Brownian forces on nanofluid thermal conductivity using Lagrangian and Eulerian approach,” Nanoscale Microscale Thermophys. Eng., vol. 14, no. 4, pp. 187–208, 2010. DOI: 10.1080/15567265.2010.500318.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanopart. Res., vol. 6, no. 6, pp. 577–588, 2004. DOI: 10.1007/s11051-004-3170-5.
  • J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” Int. Commun. Heat Mass Transfer, vol. 32, no. 9, pp. 1111–1118, 2005. DOI: 10.1016/j.icheatmasstransfer.2005.05.014.
  • A. S. Dogonchi, M. Waqasb and D. D. Ganjic, “Shape effects of copper-oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach,” Int. Commun. Heat Mass Transfer, vol. 107, pp. 14–23, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.05.014.
  • E. Abu-Nada, Z. Masoud and A. Hijazi, “Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids,” Int. Commun. Heat Mass Transfer, vol. 35, no. 5, pp. 657–665, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.11.004.
  • M. Djezzar, “Contribution à l’étude de la convection naturelle dans différents espaces annulaires elliptiques confocaux soumis à différentes conditions de chauffage,” Thèse de Doctorat en Physique Energétique Perpignan, 2005.
  • A. Bouzerzour, M. Djezzar, H. F. Oztop, T. Tayebi and N. Abu-Hamdeh, “Natural convection in nanofluid filled and partially heated annulus: Effect of different arrangements of heaters,” Physica A, vol. 538, pp. 122479, 2020. DOI: 10.1016/j.physa.2019.122479.
  • H. K. Versteeg and W. Malalasekera, 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. London, UK: Pearson.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.