Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 11
243
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of slip effect on viscous dissipation heat and lubrication characteristics of Gas Journal Bearing: A multiscale analysis

ORCID Icon, , , , &
Pages 1285-1302 | Received 23 Mar 2022, Accepted 18 Jul 2022, Published online: 19 Aug 2022

References

  • L. L. Gu, E. Guenat and J. Schiffmann, “A review of grooved dynamic gas bearing,” Appl. Mech. Rev., vol. 72, no. 1, pp. 010802, Jan. 2020. DOI: 10.1115/1.4044191.
  • S. Kim, D. Shin and A. B. Palazzolo, “A review of journal bearing induced nonlinear rotordynamic vibrations,” J. Tribol. T. ASME, vol. 143, no. 11, pp. 1–39, Nov. 2021. DOI: 10.1115/1.4049789.
  • D. Shin, J. Yang, X. Tong, J. Suh and A. Palazzolo, “A review of journal bearing thermal effects on rotordynamic response,” J. Tribol. T ASME, vol. 143, no. 3, pp. 031803, Mar. 2021. DOI: 10.1115/1.4048167.
  • P. Samanta, N. C. Murmu and M. M. Khonsari, “The evolution of foil bearing technology,” Tribol. Int., vol. 135, pp. 305–323, Jul. 2019. DOI: 10.1016/j.triboint.2019.03.021.
  • L. S. Andrés and B. Rodríguez, “Experiments with a rotor-hybrid gas bearing system under-going maneuver loads from its base support,” J. Eng. Gas Turb. Power, vol. 142, no. 11, pp. 111004, Nov. 2020. DOI: 10.1115/1.4048651.
  • Y. Y. Li, G. Lei, Y. Sun and L. Wang, “Effect of environmental pressure enhanced by a booster on the load capacity of the hydrodynamic gas bearing of a turbo expander,” Tribol. Int., vol. 105, pp. 77–84, Jan. 2017. DOI: 10.1016/j.triboint.2016.09.027.
  • B. Zhang, S. M. Qi, S. Feng, H. P. Gen, Y. H. Sun and L. Yu, “An experimental investigation of a microturbine simulated rotor supported on multileaf gas foil bearings with backing bump foils,” Proc. IMechE. Part J J. Eng. Tribol., vol. 232, no. 9, pp. 1169–1180, Sep. 2018. DOI: 10.1177/1350650117725463.
  • M. Arghir and O. Benchekroun, “A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction,” Tribol. Int., vol. 134, pp. 129–144, Jun. 2019. DOI: 10.1016/j.triboint.2019.01.038.
  • M. Rom and S. Muller, “A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects,” Tribol. Int., vol. 133, pp. 55–66, May. 2019. DOI: 10.1016/j.triboint.2018.12.030.
  • Z.-C. Peng and M. M. Khonsari, “A thermohydrodynamic analysis of foil journal bearings,” J. Tribol. T ASME, vol. 128, no. 3, pp. 534–541, Jul. 2006. DOI: 10.1115/1.2197526.
  • C. A. Heshmat, D. S. Xu and H. Heshmat, “Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods,” J. Tribol. T ASME, vol. 122, no. 1, pp. 199–204, Jan. 2000. DOI: 10.1115/1.555343.
  • S. P. Bhore and A. K. Darpe, “Investigations on characteristics of micro/meso scale gas foil journal bearings for 100–200W class micro power systems using first order slip velocity boundary conditions and the effective viscosity model,” Microsyst Technol., vol. 19, no. 4, pp. 509–523, Apr. 2013. DOI: 10.1007/s00542-012-1639-1.
  • J. S. Larsen, I. F. Santos and V. S. Osmanski, “Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches,” J. Sound Vib., vol. 381, pp. 179–191, Oct. 2016. DOI: 10.1016/j.jsv.2016.06.022.
  • Z. Y. Guo, Y. L. Cao, K. Feng, H. Q. Guan and T. Zhang, “Effects of static and imbalance loads on nonlinear response of rigid rotor supported on gas foil bearings,” Mech. Syst. Signal Pr., vol. 133, pp. 106271, Nov. 2019. DOI: 10.1016/j.ymssp.2019.106271.
  • M. R. Pattnayak, R. K. Pandey and J. K. Dutt, “Performance behaviours of a self-acting gas journal bearing with a new bore design,” Tribol. Int., vol. 151, pp. 106418–718, Nov. 2020. DOI: 10.1016/j.triboint.2020.106418.
  • H. Yan, et al., “Performance prediction of externally pressurized gas bearings for high-speed turbo-expander involving hydrogen, helium and air working fluids,” Int. J. Hydrogen Energ., vol. 46, no. 67, pp. 33453–33467, Sep. 2021. DOI: 10.1016/j.ijhydene.2021.07.160.
  • J. Kumar, D. S. Khamari, S. K. Behera and R. K. Sahoo, “A review of thermohydrodynamic aspects of gas foil bearings,” Proc. IMechE. Part J J. Eng. Tribol., in press, Dec. 2021. DOI: 10.1177/13506501211062536.
  • K. Ryu and L. S. Andrés, “On the failure of a gas foil bearing: High temperature operation without cooling flow,” J. Eng. Gas Turb. Power, vol. 135, no. 11, pp. 112506, Nov. 2013. DOI: 10.1115/1.4025079.
  • S. Fukui and R. Kaneko, “Analysis of ultra-thin gas film lubrication based on linearized boltzmann equation: First report—derivation of a generalized lubrication equation including thermal creep flow,” J. Tribol. T ASME, vol. 110, no. 2, pp. 253–261, Apr. 1988. DOI: 10.1115/1.3261594.
  • S. Fukui and R. Kaneko, “A database for interpolation of poiseuille flow rates for high knudsen number lubrication problems,” J. Tribol- T ASME, vol. 112, no. 1, pp. 78–83, Jan. 1990. DOI: 10.1115/1.2920234.
  • Y. T. Hsia and G. A. Domoto, “An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances,” J. Tribol. T ASME, vol. 105, no. 1, pp. 120–130, Jan. 1983. DOI: 10.1115/1.3254526.
  • O. I. Vinogradova, “The drainage of thin liquid film confined between hydrophobic surfaces,” Langmuir, vol. 11, no. 6, pp. 2213–2220, Jun. 1995. DOI: 10.1021/la00006a059.
  • S. H. Cui, C. W. Zhang, M. Fillon and L. Gu, “Optimization performance of plain journal bearings with partial wall slip,” Tribol. Int, vol. 145, pp. 106137, May. 2020. DOI: 10.1016/j.triboint.2019.106137.
  • H. Spikes and S. Granick, “Equation for slip of simple liquids at smooth solid surfaces,” Langmuir, vol. 19, no. 12, pp. 5065–5071, Jun. 2003. DOI: 10.1021/la034123j.
  • S. M. S, “Numerical simulation of compressible flows by lattice Boltzmann method,” Numer. Heat Tr. A- Appl., vol. 75, no. 3, pp. 167–182, Feb. 2019. DOI: 10.1080/10407782.2019.1580053.
  • Y. C. Zhang, G. N. Xie, A. Karimipour and B. Sunden, “LBM modeling and analysis on microchannel slip flow and heat transfer under different heating conditions,” Numer. Heat Tr. A- Appl., vol. 78, no. 5, pp. 159–179, Jul. 2020. DOI: 10.1080/10407782.2020.1786289.
  • X. Q. Zhang, Q. H. Chen and J. F. Liu, “Behaviors of the wedge-shaped gas-lubricated film using the finite difference lattice Boltzmann method,” Proc. IMechE. Part J: J. Eng. Tribol., vol. 230, no. 12, pp. 1542–1553, Dec. 2016. DOI: 10.1177/1350650116638611.
  • C. X. Jiao, Z. J. Leng, D. L. Zou, N. Ta and Z. S. Rao, “Numerical research of the infinitely wide wedge flow based on the lattice Boltzmann method,” Proc. IMechE. Part J: J. Eng. Tribol, vol. 235, no. 2, pp. 343–350, Feb. 2021. DOI: 10.1177/1350650120962929.
  • C. X. Jiao, J. H. Xu, D. L. Zou, N. Ta and Z. S. Rao, “Flow field characteristics of micro-scale textured surfaces of water-lubricated bearings using lattice Boltzmann method,” ILT, ” vol. 73, no. 5, pp. 736–741, Jun. 2021. DOI: 10.1108/ILT-02-2021-0056.
  • M. Nickaeen, S. Jafari and M. Rahnama, “Simulation of macro and micro journal bearings: Using the lattice Boltzmann method,” Proc. IMechE, vol. 226, no. 9, pp. 760–768, Sep. 2012. DOI: 10.1177/1350650112445974.
  • A. A. Solghar, “Multiple-relaxation-time lattice Boltzmann method of hydrodynamic lubrication in lemon-bore bearing,” Proc. IMechE. Part J: J. Eng. Tribol., vol. 232, no. 4, pp. 469–479, Apr. 2018. DOI: 10.1177/1350650117719615.
  • Z. Saboohi, S. Roofeh and M. R. Salimi, “Analysis of misalignment effects on hydrodynamic non-circular journal bearings using three-dimensional lattice Boltzmann method,” Iran J Sci Technol Trans Sci., vol. 44, no. 6, pp. 1739–1751, Dec. 2020. DOI: 10.1007/s40995-020-01010-2.
  • Y. L. Jiang, B. Xu, X. Y. Lu, H. C. Yu, X. Y. Luo and Z. Q. Chen, “Multiscale simulation of flow in gas-lubricated journal bearings: A comparative study between the Reynolds equation and lattice Boltzmann methods,” Eng. Appl. Comp. Fluid, vol. 15, no. 1, pp. 1792–1810, Jan. 2021. DOI: 10.1080/19942060.2021.1987330.
  • L. Wang, Z. Xu and Z. L. Guo, “Lattice Boltzmann simulation of separation phenomenon in a binary gaseous flow through a microchannel,” J. Appl. Phys., vol. 120, no. 13, pp. 134306, Oct. 2016. DOI: 10.1063/1.4964249.
  • B. J. Hamrock and B. O. Jacobson, Fundamentals of Fluid Film Lubrication, Marcel Dekker, NY, 2004,
  • F. Sharipov, “Data on the velocity slip and temperature jump on a gas-solid interface,” J. Phys. Chem. Ref. Data, vol. 40, no. 2, pp. 023101, Jun. 2011. DOI: 10.1063/1.3580290.
  • P. Lallemand and L. S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, vol. 61, no. 6 Pt A, pp. 6546–6562, Jun. 2000. DOI: 10.1103/PhysRevE.61.6546.
  • Q. Li, Y. Yu, P. Zhou and H. J. Yan, “Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: A lattice Boltzmann study,” Appl. Therm. Eng., vol. 132, pp. 490–499, Mar. 2018. DOI: 10.1016/j.applthermaleng.2017.12.105.
  • Z. L. Guo, T. S. Zhao and Y. Shi, “Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows,” J. Appl. Phys., vol. 99, no. 7, pp. 074903, Apr. 2006. DOI: 10.1063/1.2185839.
  • T. Imamura, K. Suzuki, T. Nakamura and M. Yoshida, “Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method,” J. Comput. Phys., vol. 202, no. 2, pp. 645–663, Jan. 2005. DOI: 10.1016/j.jcp.2004.08.001.
  • N. Dongari, A. Agrawal and A. Agrawal, “Analytical solution of gaseous slip flow in long microchannels,” Int. J. Heat Mass Tran., vol. 50, no. 17–18, pp. 3411–3421, Aug. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.048.
  • R. S. Myong, “A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows,” J. Comput. Phys., vol. 195, no. 2, pp. 655–676, Apr. 2004. DOI: 10.1016/j.jcp.2003.10.015.
  • L. Wang, Z. Zeng, L. Zhang, L. Qiao, Y. Zhang and Y. Lu, “A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect,” Physica A, vol. 495, pp. 180–190, Apr. 2018. DOI: 10.1016/j.physa.2017.12.028.
  • S. Chen and Z. Tian, “Simulation of microchannel flow using the lattice Boltzmann method,” Physica A, vol. 388, no. 23, pp. 4803–4810, Dec. 2009. DOI: 10.1016/j.physa.2009.08.015.
  • K. Radil and M. Zeszotek, “An experimental investigation into the temperature profile of a compliant foil air bearing,” Tribol. T., vol. 47, no. 4, pp. 470–479, Oct–Dec. 2004. DOI: 10.1080/05698190490501995.
  • B. Dykas and S. A. Howard, “Journal design considerations for turbomachine shafts supported on foil air bearings,” Tribol. T., vol. 47, no. 4, pp. 508–516, Oct–Dec. 2004. DOI: 10.1080/05698190490493391.
  • L. S. Andrés and T. A. Chirathadam, “A metal mesh foil bearing and a bump-type foil bearing: Comparison of performance for two similar size gas bearings,” J. Eng. Gas Turb. Power, vol. 134, no. 10, pp. 102501, Oct. 2012. DOI: 10.1115/1.4007061.
  • N. S. Lee, D. H. Choi, Y. B. Lee, T. H. Kim and C. H. Kim, “The influence of the slip flow on steady-state load capacity, stiffness and damping coefficients of elastically supported gas foil bearings,” Tribol. T., vol. 45, no. 4, pp. 478–484, Oct. 2002. DOI: 10.1080/10402000208982577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.