Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 12
330
Views
2
CrossRef citations to date
0
Altmetric
Articles

Transient thermal performance of multilayer thermal protection systems doped with phase change materials

, &
Pages 1331-1345 | Received 23 Mar 2022, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • D. Glass, “Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles,” 15th AIAA Int. Space Planes Hypersonic Syst. Technol. Conf., p. 2682, 2008. Available: https://arc.aiaa.org/doi/10.2514/6.2008-2682. DOI: 10.2514/6.2008-2682.
  • F. Christin, “Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites,” Adv. Eng. Mater., vol. 4, no. 12, pp. 903–912, 2002. DOI: 10.1002/adem.200290001.
  • W. Krenkel and F. Berndt, “C/C–SiC composites for space applications and advanced friction systems,” Mater. Sci. Eng.: A, vol. 412, no. 12, pp. 177–181, 2005. DOI: 10.1016/j.msea.2005.08.204.
  • D. W. Schaefer and K. D. Keefer, “Structure of random porous materials: Silica aerogel,” Phys. Rev. Lett., vol. 56, no. 20, pp. 2199–2202, 1986. DOI: 10.1103/PhysRevLett.56.2199.
  • Y. L. He and T. Xie, “Advances of thermal conductivity models of nanoscale silica aerogel insulation material,” Appl. Therm. Eng., vol. 81, pp. 28–50, 2015. DOI: 10.1016/j.applthermaleng.2015.02.013.
  • J. F. Poco, J. H. Satcher Jr., and L. W. Hrubesh, “Synthesis of high porosity, monolithic alumina aerogels,” J. Non-Cryst. Solids, vol. 285, no. 13, pp. 57–63, 2001. DOI: 10.1016/S0022-3093(01)00432-X.
  • W. Z. Fang et al., “Predictions of effective thermal conductivities for three -dimensional four-directional braided composites using the lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 92, pp. 120–130, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.071.
  • W. Z. Fang et al., “Numerical predictions of the effective thermal conductivity for needled C/C-SiC composite materials,” Numer. Heat Transf. A: Appl., vol. 70, no. 10, pp. 1101–1117, 2016. DOI: 10.1080/10407782.2016.1230427.
  • J. J. Gou et al., “Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites,” Compos. Struct., vol. 163, pp. 152–167, 2017. DOI: 10.1016/j.compstruct.2016.12.034.
  • Y. Chen et al., “Theoretical modeling and experimental validation for the effective thermal conductivity of moist silica aerogel,” Int. J. Heat Mass Transf., vol. 147, pp. 118842, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118842.
  • H. Zhang et al., “The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials,” Int. Commun. Heat Mass Transfer, vol. 68, pp. 158–161, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.08.027.
  • W. Z. Fang et al., “Numerical predictions of thermal conductivities for the silica aerogel and its composites,” Appl. Therm. Eng., vol. 115, pp. 1277–1286, 2017. DOI: 10.1016/j.applthermaleng.2016.10.184.
  • C. M. Almeida, M. E. Ghica, and L. R. Durães, “An overview on alumina-silica-based aerogels,” Adv. Colloid Interface Sci., vol. 282, pp. 102189, 2020.
  • T. Cui et al., “Multiscale simulation of thermal contact resistance in electronic packaging,” Int. J. Therm. Sci., vol. 83, pp. 16–24, 2014. DOI: 10.1016/j.ijthermalsci.2014.04.006.
  • M. Grujicic, C. L. Zhao, and E. C. Dusel, “The effect of thermal contact resistance on heat management in the electronic packaging,” Appl. Surf. Sci., vol. 246, no. 13, pp. 290–302, 2005. DOI: 10.1016/j.apsusc.2004.11.030.
  • J. J. Gou et al., “Study of thermal contact resistance of rough surfaces based on the practical topography,” Comput. Fluids, vol. 164, pp. 2–11, 2018. DOI: 10.1016/j.compfluid.2016.09.018.
  • R. T. Swann, C. M. Pittman, and J. C. Smith, “One-dimensional numerical analysis of the transient response of thermal protection systems,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, 1965.
  • P. Li and H. Cheng, “Thermal analysis and performance study for multilayer perforated insulation material used in space,” Appl. Therm. Eng., vol. 26, no. 16, pp. 2020–2026, 2006. DOI: 10.1016/j.applthermaleng.2006.01.004.
  • K. Daryabeigi, “Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating,” J. Spacecr. Rockets, vol. 39, no. 4, pp. 509–514, 2002. DOI: 10.2514/2.3863.
  • Y. C. Shih et al., “Numerical study of transient thermal ablation of high-temperature insulation materials,” J. Thermophys. Heat Transfer, vol. 17, no. 1, pp. 53–61, 2003. DOI: 10.2514/2.6733.
  • T. Ji et al., “Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition,” Appl. Therm. Eng., vol. 70, no. 1, pp. 957–965, 2014. DOI: 10.1016/j.applthermaleng.2014.06.014.
  • B. Zalba et al., “Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications,” Appl. Therm. Eng., vol. 23, no. 3, pp. 251–283, 2003. DOI: 10.1016/S1359-4311(02)00192-8.
  • O. Mesalhy et al., “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Convers. Manag., vol. 46, no. 6, pp. 847–867, 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • S. Sinha and S. K. Sinha, “Reusable high temperature thermal protection system,” U.S. Patent Application, 13/113, 965, Nov 24, 2011.
  • J. J. Zhang, Z. G. Qu, and Z. G. Jin, “Experimental study on the thermal characteristics of a microencapsulated phase-change composite plate,” Energy, vol. 71, pp. 94–103, 2014. DOI: 10.1016/j.energy.2014.04.071.
  • T. Xie, Y. L. He, and Z. X. Tong, “Analysis of insulation performance of multilayer thermal insulation doped with phase change material,” Int. J. Heat Mass Transfer, vol. 102, pp. 934–943, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.078.
  • W. Z. Fang et al., “Atomic layer deposition in porous electrodes: A pore-scale modeling study,” Chem. Eng. J., vol. 378, pp. 122099, 2019. DOI: 10.1016/j.cej.2019.122099.
  • W. Z. Fang et al., “Magnetic actuation of surface walkers: The effects of confinement and inertia,” Langmuir, vol. 36, no. 25, pp. 7046–7055, 2020.
  • H. Karani and C. Huber, “Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media,” Phys. Rev. E, vol. 91, no. 2, pp. 023304, 2015. DOI: 10.1103/PhysRevE.91.023304.
  • L. Li et al., “Conjugate heat and mass transfer in the lattice Boltzmann equation method,” Phys. Rev. E, vol. 89, no. 4, pp. 43308, 2014. DOI: 10.1103/PhysRevE.89.043308.
  • Z. Hu, J. Huang, and W. A. Yong, “Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions,” Phys. Rev. E, vol. 93, no. 4, pp. 043320, 2016.
  • W. Z. Fang et al., “Pore scale investigations on melting of phase change materials considering the interfacial thermal resistance,” Int. Commun. Heat Mass Transfer, vol. 115, pp. 104631, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104631.
  • W. Z. Fang, H. Zhang, C. Y. Zhang, and C. Yang, “Freezing process of ferrofluid droplets: Numerical and scaling analyses,” Phys. Rev. Fluids, vol. 5, no. 5, pp. 053601, 2020. DOI: 10.1103/PhysRevFluids.5.053601.
  • J. Huang and W. A. Yong, “Boundary conditions of the lattice Boltzmann method for convection–diffusion equations,” J. Comput. Phys., vol. 300, pp. 70–91, 2015. DOI: 10.1016/j.jcp.2015.07.045.
  • W. S. Jiaung, J. R. Ho, and C. P. Kuo, “Lattice Boltzmann method for the heat conduction problem with phase change,” Numer. Heat Transf. B: Fundam., vol. 39, no. 2, pp. 167–187, 2001.
  • C. Huber et al., “Lattice Boltzmann model for melting with natural convection,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1469–1480, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.